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ABSTRACT - The accuracy of multiphase flow simulation in porous media is critical for reservoir 
management but the achievement is challenging due to the nonlinear, coupled nature of the governing 
equations and truncation errors inherent in mesh-based numerical solvers. Therefore, this study aims to present 
a mesh-free, fully implicit Physics-Informed Neural Network (PINN) framework for two-phase immiscible 
oil–water flow. The framework has feedforward neural networks which simultaneously approximate the 
continuous pressure and saturation fields while embedding the governing partial differential equations 
(PDEs), boundary conditions, and initial conditions directly into the loss function. Moreover, three network 
topologies in the form of single-row (N1), dual-row (N2), and branched-layer (NY) are evaluated across 
nine configurations with different architectural variants. The key novelty is in the fully implicit formulation 
of branched network architectures which effectively minimizes interference between pressure and saturation 
predictions. The benchmarking against the commercial simulator Eclipse© shows that NY configuration 
achieves the best performance with a mean squared error below 1.0e-10. N1 architecture also provides 
superior stability across successive time steps, while N2 exhibits slower convergence. Deep and narrow 
architectures produce higher accuracy but require approximately twice the computational cost per iteration. 
The results show that the proposed PINN-based framework produces high-fidelity solutions for complex 
reservoir problems without depending on spatial meshing despite higher computational demands. This 
offers a promising alternative to conventional numerical methods for both regular and irregular geometries.
Keywords: reservoir simulation, fully implicit, physics-informed neural networks.
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INTRODUCTION
The flow of fluids through porous media is 

a fundamental phenomenon in several natural 
and industrial processes, including groundwater 
hydrology, oil recovery, and chemical engineering. 
Porous media flow is the movement of fluids through 
materials containing interconnected voids or pores 
such as soil, sandstone, or synthetic membranes. 
In petroleum engineering and hydrogeology, the 
understanding of multiphase flow with a specific 
focus on the simultaneous flow of oil and water is 
very important for effective reservoir management 
and environmental remediation (Cai & Berg 2025). 
The flow of two immiscible fluids such as oil and 
water through a porous medium causes an interaction 
with the solid matrix and each other (Buckley 
& Leverett 1942). This behavior is governed by 
several key phenomena. For example, the interfacial 
tension and wettability often experienced lead to 
the tendency of one fluid, typically water, to wet 
the surface of the pores and produce cAmerican 
petroleum institute llary forces that influence phase 
distribution (Alizadeh & Fatemi 2021). The ability 
of each fluid to flow is reduced due to the presence 
of the other phase which is quantified by relative 
permeability functions (Corey et al., 1956; Goda 
& Behrenbruch 2004). This shows that each fluid 
occupies a fraction of the pore volume defined as 
saturation. Moreover, the sum of the saturations of 
oil and water is required to equal unity.

The equations governing fluid flow in porous 
media, including single-phase and multiphase, 
are typically described by nonlinear and coupled 
partial differential equations (PDEs). However, 
analytical solutions are generally not feasible due to 
the nonlinear and coupled nature of the equations, 
except in highly simplified cases (Abou-Kassem et 
al., 2020). This leads to the preference for numerical 
methods. For example, Finite Difference Method 
(FDM) and Finite Volume Method (FVM) are 
common discretization methods for spatial domains. 
Implicit Pressure, Explicit Saturation (IMPES) 
and Fully Implicit Method (FIM) schemes are 
widely used time-integration methods (Jenny et al., 
2006; Moncorgé et al., 2018; Younis et al., 2010). 
These numerical solutions are approximations that 
introduce errors due to truncation of the Taylor 
series during discretization and linearization 
compared to the exact analytical solutions (Tijink 
& Cottier 2019). Therefore, boundary (Dirichlet or 
Neumann) and initial conditions (initial saturation 

and pressure distributions) need to be specified in 
the process of solving the models. Two-phase flow 
of oil and water in porous media is a complex but 
well-studied process governed by conservation 
laws and Darcy’s law with important applications 
in energy and environmental fields. The accurate 
modeling requires detailed characterization of the 
porous medium and fluid properties as well as the 
adoption of robust mathematical methods for solving 
the coupled nonlinear equations.

Artificial Neural Networks (ANNs) have shown 
considerable potential in solving PDEs by leveraging 
their capacity as universal function approximators 
(Long et al., 2019; Sirignano & Spiliopoulos 2018). 
This is associated with the ability to offer a mesh-
free framework in providing solutions compared 
to traditional numerical methods which depend on 
discretization techniques such as finite difference or 
finite element (Berrone & Pintore 2024; Diab et al., 
2022). The process is achieved by approximating the 
solution function over the domain directly through 
training a neural network to satisfy the governing 
equations as well as the boundary and initial 
conditions (Lu et al., 2021).

The key advantage of using ANNs for PDEs is 
in the ability to generalize over the input domain 
and represent complex nonlinear mappings with 
a relatively compact model (Raissi et al., 2019). 
This leads to the specific usefulness for high-
dimensional problems and scenarios related to sparse 
or scattered data where conventional methods are 
computationally expensive or unstable. Moreover, 
ANNs can be trained to provide continuous, 
differentiable solutions across the entire domain 
which is advantageous for problems requiring 
gradient information.

A foundational work in this domain was 
conducted by Lagaris et al. who introduced a 
method for solving both ordinary and PDEs using 
feedforward neural networks (Lagaris et al., 1998). 
The method focused on training the network to 
minimize the residual of PDEs and inherently 
satisfied boundary conditions through a carefully 
designed trial function. This marked an important 
step in integrating machine learning methods into 
numerical analysis.

More recent developments include Physics-
Informed Neural Network (PINN) framework where 
the loss function of ANNs is constructed to include 
PDEs residuals and any relevant physical constraints 
using automatic differentiation (Raissi et al., 2019). 
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This method has shown success in different forward 
and inverse problems associated with complex 
PDEs in fields such as fluid dynamics, elasticity, 
and heat conduction. ANNs have shown promise 
in approximating the solutions of such complex 
systems due to the ability to learn from data and 
capture nonlinear relationships without depending on 
mesh-based discretization. In the context of porous 
media, this capability becomes specifically valuable 
when focusing on heterogeneous properties, irregular 
geometries, and limited observational data. Recent 
studies have successfully applied PINN to simulate 
fluid flow in porous structures. For example, Zhu et 
al. (2021) applied PINN to model single-phase flow 
through heterogeneous porous media by encoding 
the governing PDEs and boundary conditions into 
the neural network loss function.  Zhang et al. (2024) 
extended the method to multiphase flow scenarios 
to show the ability in capturing saturation fronts and 
pressure distributions effectively. ANNs were also 
useful in building the model for the prediction of 
wax deposition rate in two-phase flow, total organic 
carbon and forecasting reservoir performances 
during the carbon capture, utilization, and storage 
(Iskandar & Kurihara 2022; Septiano et al., 2021; 
Wardhana et al., 2021). The results show that ANNs 
and PINN are promising alternatives to traditional 
numerical solvers for simulating porous media flows 
with advantages in flexibility, generalizability, and 
the ability to incorporate sparse data (Fraces et al., 
2020; Fraces & Tchelepi 2021; Fuks & Tchelepi 
2020; Shukla et al., 2021).

The application of PINN to solve PDEs has 
experienced rAmerican petroleum institute d growth 
but the adoption for strongly coupled nonlinear 
systems such as two-phase flow in porous media 
remains challenging. A critical and underexplored 
aspect is the design of optimal neural network 
architectures for those types of systems. Specifically, 
the standard Fully Connected Neural Network 
(FNN) with multiple outputs is often adopted to 
simultaneously predict pressure and saturation 
distributions. However, the variables exhibit 
fundamentally different characteristics. This is 
observed from the fact that pressure is typically 
elliptic in nature and tends to be smooth and global 
while saturation is hyperbolic, often exhibits sharp 
fronts, and is more locally influenced. The efforts to 
force a single, shared-parameter backbone network to 
learn the disparate physical behaviors can introduce a 
high risk of feature interference and gradient conflict 
during training. The process is capable of leading to 

unstable convergence or failure to find a solution that 
satisfies both governing equations simultaneously. 
Therefore, a significant study gap exists in the 
development and evaluation of specialized FNN 
topologies with a specific focus on branched or 
multi-path architectures that can effectively minimize 
interference between the pressure and saturation 
solutions to enhance the robustness and accuracy of 
PINN for fully implicit, two-phase flow simulations.

This study investigates the application of PINN 
for mesh-free simulation of two-phase flow in 
porous media. The primary objective is to solve 
coupled nonlinear PDEs governing fluid flow to 
obtain simultaneous, fully implicit solutions for 
the spatial distributions of pressure and saturation. 
A critical secondary objective is to determine the 
optimal FNN architecture for the multi-physics 
problem. This requires a comparative analysis of 
network topologies with an emphasis on the efficacy 
of monolithic versus branched designs to mitigate 
gradient conflict between the distinct physical 
variables and ensure robust convergence. The model 
incorporates well constraints with source and sink 
terms representing an injector and a producer. The 
spatial domain is treated as continuous to eliminate 
the need for a mesh-grid method as required in 
conventional reservoir simulations. Therefore, 
this method avoids truncation errors and improves 
solution accuracy. The predictive accuracy and 
convergence performance of different architectures 
evaluated based on hyperparameters such as depth 
and width are rigorously benchmarked against 
solutions from the industry-standard numerical 
simulator known as Eclipse.

Background
The governing equation for two-phase flow 

in porous media is achieved by combining mass 
conservation and Darcy’s law (Abou-Kassem et al., 
2020). The fluid phases of oil and water as well as 
the cAmerican petroleum institute llary pressure 
are considered to be neglected. Therefore, Darcy's 
equations and the standard black oil fluid model are 
substituted into the continuity equations to produce 
the following mass balance for each phase as in 
Equations 1 and 2.

(1)𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

(2)
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where, K represents the absolute permeability vector 
of the reservoir rock and the relative permeability  of 
a fluid phase is dependent on its saturation​. Density  
viscosity ​, and porosity ϕ varies with pressure . The 
subscript l denotes the liquid phase which includes 
oil o and water w. Moreover, ∇ signifies the spatial 
gradient and ∂/∂t is the partial time derivative. In a 
displacement process where water replaces oil in a 
fully oil-saturated porous medium, two-phase flow 
behavior produced is characterized by the drainage 
relative permeability curve. The relative permeability 
of oil and water was empirically formulated by Corey 
(Corey et al., 1956), (Goda & Behrenbruch 2004) 
and presented in Equations 3 and 4:

𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

(3)

𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

(4)

𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

(5)

A standard method in petroleum reservoir 
simulation known as fluid compressibility is 
integrated in the black oil model to account for 
pressure-dependent changes in fluid density and 
volume. Each fluid in a two-phase oil-water is 
considered slightly compressible and is characterized 
using pressure-dependent properties.

𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

(6)

 A Fully Implicit Reservoir Simulation Using Physics Informed Neural Networks, Wahyudi et al. / Scientific Contributions Oil and Gas  

The isothermal compressibility of a fluid phase 
𝑐𝑐𝑙𝑙 is the relative volume change with pressure at 
constant temperature. Meanwhile, the formation 
volume factor 𝐵𝐵𝑙𝑙 varies with pressure 𝑃𝑃.  

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

The porosity of a rock which is represented by 
𝜙𝜙  describes the fraction of the rock volume 
considered pore space and varies as a function of 
pressure. The change in porosity due to pressure is 
governed by the rock compressibility 𝑐𝑐𝑟𝑟. 

The governing equations for fluid flow in 
porous media are typically formulated as a 
combination of boundary and initial value 
problems. An initial value problem refers to a 
situation where the solution of the governing 
equations depends on specified conditions at an 
initial time. This often shows that the initial 
distributions of pressure, saturation, or other 
relevant state variables need to be known in the 
spatial domain at the start of the simulation. 
Meanwhile, a boundary value problem focuses on 
specifying the behavior of the solution along the 
spatial boundaries of the domain. The existence in 
porous media includes prescribed pressures, flow 
rates, or no-flow conditions at the reservoir 
boundaries, injection wells, or production wells. 
The boundary conditions are important for 
determining how the fluid interacts with the 
surrounding environment and govern the 
movement in the domain. 

Fully Implicit Method (FIM) in reservoir 
simulation is a numerical method often used in 
reservoir simulation to solve the coupled systems 
of nonlinear PDEs governing multiphase fluid 
flow in porous media. It is called fully implicit 
because all variables such as pressure, saturation, 
composition, etc. are treated implicitly in time to 
ensure unconditional stability for large timesteps 
but the process is computationally expensive. All 
terms are evaluated at the next timestep t+1 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

The domain is discretized into grid blocks and the 
equations are integrated over each control volume. 
Therefore, the discretized equations are written as 
residuals: 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

Where, 𝐹𝐹(𝒃𝒃) is the residual form of the 
governing equation of fluid flow through porous 
media and 𝐱𝐱 is a vector of variables of pressure 
and saturation. The equation is solved through 
Newton-Raphson as follows: 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

Where, J is the Jacobian matrix containing 
partial derivatives of all equations with respect to 
all variables. 

 
III. METHOD 

 
A conceptual model was proposed to develop 

fluid flow solutions using PINN based on the five-
spot waterflooding injection pattern in a two-
dimensional (2D) plane as presented in Figure 1. 
The simulation area included a single sector with 
production-injection pairs positioned at opposite 
corners of a square-shaped area. The reservoir 
fluid consisted of a two-phase immiscible fluid in 
the form of oil and water which were treated as 
slightly compressible. The model assumed there 
was no dissolved gas in either the oil or water 
phases. Moreover, gravitational acceleration was 
neglected in the 2D aerial model. 

The pattern of a fluid flow around a well is 
radial due to the movement from the surrounding 
radius toward the wellbore. Consequently, the 
well blocks were modeled separately from the 
reservoir domain and used to represent the 
surrounding area with homogeneous physical 
properties. This model was adapted from a similar 
block in numerical reservoir simulation which also 
had a steady-state radial flow. A previous study 
developed a model in numerical simulation from a 
vertical well in a reservoir with a focus on the 
inflow performance relationship (Peaceman 1983). 
The fluid flowed towards a radial center at one 
corner of the reservoir domain. The Darcy velocity 
in the radial direction at the block interface was 
subsequently described as a linear velocity along 
the 𝑥𝑥𝑥𝑥 axis. 
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spatial domain at the start of the simulation. 
Meanwhile, a boundary value problem focuses on 
specifying the behavior of the solution along the 
spatial boundaries of the domain. The existence in 
porous media includes prescribed pressures, flow 
rates, or no-flow conditions at the reservoir 
boundaries, injection wells, or production wells. 
The boundary conditions are important for 
determining how the fluid interacts with the 
surrounding environment and govern the 
movement in the domain. 

Fully Implicit Method (FIM) in reservoir 
simulation is a numerical method often used in 
reservoir simulation to solve the coupled systems 
of nonlinear PDEs governing multiphase fluid 
flow in porous media. It is called fully implicit 
because all variables such as pressure, saturation, 
composition, etc. are treated implicitly in time to 
ensure unconditional stability for large timesteps 
but the process is computationally expensive. All 
terms are evaluated at the next timestep t+1 
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𝛥𝛥𝛥𝛥  (7)
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phases. Moreover, gravitational acceleration was 
neglected in the 2D aerial model. 

The pattern of a fluid flow around a well is 
radial due to the movement from the surrounding 
radius toward the wellbore. Consequently, the 
well blocks were modeled separately from the 
reservoir domain and used to represent the 
surrounding area with homogeneous physical 
properties. This model was adapted from a similar 
block in numerical reservoir simulation which also 
had a steady-state radial flow. A previous study 
developed a model in numerical simulation from a 
vertical well in a reservoir with a focus on the 
inflow performance relationship (Peaceman 1983). 
The fluid flowed towards a radial center at one 
corner of the reservoir domain. The Darcy velocity 
in the radial direction at the block interface was 
subsequently described as a linear velocity along 
the 𝑥𝑥𝑥𝑥 axis. 

 

The governing equations for fluid flow in porous 
media are typically formulated as a combination of 
boundary and initial value problems. An initial value 
problem refers to a situation where the solution of the 
governing equations depends on specified conditions 

at an initial time. This often shows that the initial 
distributions of pressure, saturation, or other relevant 
state variables need to be known in the spatial 
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includes prescribed pressures, flow rates, or no-flow 
conditions at the reservoir boundaries, injection 
wells, or production wells. The boundary conditions 
are important for determining how the fluid interacts 
with the surrounding environment and govern the 
movement in the domain.

Fully Implicit Method (FIM) in reservoir 
simulation is a numerical method often used in 
reservoir simulation to solve the coupled systems 
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because all variables such as pressure, saturation, 
composition, etc. are treated implicitly in time to 
ensure unconditional stability for large timesteps but 
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(7)

𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
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𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
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(4) 
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=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡
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The domain is discretized into grid blocks and the 
equations are integrated over each control volume. 
Therefore, the discretized equations are written as 
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𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

where,  is the residual form of the governing equation 
of fluid flow through porous media and  is a vector of 
variables of pressure and saturation. The equation is 
solved through Newton-Raphson as follows:

𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

(10)

Where, J is the Jacobian matrix containing 
partial derivatives of all equations with respect to 
all variables.
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METHODOLOGY
A conceptual model was proposed to develop 

fluid flow solutions using PINN based on the 
five-spot waterflooding injection pattern in a two-
dimensional (2D) plane as presented in Figure 1. 
The simulation area included a single sector with 
production-injection pairs positioned at opposite 
corners of a square-shaped area. The reservoir fluid 
consisted of a two-phase immiscible fluid in the 
form of oil and water which were treated as slightly 
compressible. The model assumed there was no 
dissolved gas in either the oil or water phases. 
Moreover, gravitational acceleration was neglected 
in the 2D aerial model. 

The pattern of a fluid flow around a well is radial 
due to the movement from the surrounding radius 
toward the wellbore. Consequently, the well blocks 
were modeled separately from the reservoir domain 
and used to represent the surrounding area with 
homogeneous physical properties. This model was 
adapted from a similar block in numerical reservoir 
simulation which also had a steady-state radial flow. 
A previous study developed a model in numerical 
simulation from a vertical well in a reservoir with 
a focus on the inflow performance relationship 
(Peaceman 1983). The fluid flowed towards a radial 
center at one corner of the reservoir domain. The 
Darcy velocity in the radial direction at the block 
interface was subsequently described as a linear 
velocity along the  axis.

Neural networks were trained to approximate the 
pressure and saturation field (11) at a given time step. 
The inputs are subsequently defined by 2D spatial 
variables as follows: 

𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

(12)

𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

(11)

Figure 1. Conceptual reservoir model for two-dimensional linear flow

 

Production

Well Block

Injection

The spatial domain was treated as continuous to 
eliminate the need for a mesh-grid method observed 
in conventional reservoir simulations. Moreover, 
the temporal domain was discretized in adherence 
to standard reservoir simulation frameworks where 
solutions were computed at predefined time steps. 
This discretization reduced the dimensions and 
computing time of the problem. The governing 
equation for each liquid phase was formulated into 
a residual function as presented in Equation 12. 

𝛻𝛻 ∙ (𝐾𝐾 𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑙𝑙)
𝜇𝜇𝑙𝑙

𝛻𝛻𝛻𝛻) = 𝜕𝜕(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)
𝜕𝜕𝜕𝜕 (1) 

 

∑ 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑜𝑜,𝑤𝑤

= 1 (2) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑜𝑜𝑜𝑜

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑜𝑜

 (3) 

 

𝑘𝑘𝑟𝑟𝑟𝑟 = 𝑘𝑘𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 (
𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑤𝑤𝑤𝑤

1 − 𝑆𝑆𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑤𝑤
)
𝑛𝑛𝑤𝑤

(4) 

 

 

𝑐𝑐𝑙𝑙 = 1
𝐵𝐵𝑙𝑙
(𝜕𝜕𝐵𝐵𝑙𝑙𝜕𝜕𝜕𝜕 )𝑇𝑇

(5) 

 

𝑐𝑐𝑟𝑟 = 1
𝜙𝜙 (

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)𝑇𝑇

 (6) 

 

𝛻𝛻 ∙ (𝐾𝐾
𝜌𝜌𝑙𝑙𝑘𝑘𝑟𝑟𝑟𝑟(𝑆𝑆𝑤𝑤)𝑡𝑡+1

𝜇𝜇𝑙𝑙𝑡𝑡
𝛻𝛻𝑃𝑃𝑡𝑡+1)

=
(𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡+1 − (𝜌𝜌𝑙𝑙𝜙𝜙𝑆𝑆𝑙𝑙)𝑡𝑡

𝛥𝛥𝛥𝛥  (7)
 

 

𝐹𝐹(𝒃𝒃𝑡𝑡+1) = 0, 𝒃𝒃 = [𝑃𝑃, 𝑆𝑆𝑤𝑤, 𝑆𝑆𝑜𝑜] (8) 

 

𝐽𝐽𝑘𝑘𝛿𝛿𝒃𝒃𝑘𝑘 = −𝐹𝐹𝑘𝑘 (9) 

 

𝒃𝒃𝑘𝑘+1 = 𝒃𝒃𝑘𝑘 + 𝛿𝛿𝒃𝒃𝑘𝑘 (10) 

 

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

 

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡+1
− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙 )

𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ(𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 (13)

The residual value  was evaluated at collocation 
points           . 
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Figure 1. Conceptual reservoir model for two-

dimensional linear flow 

 
Neural networks were trained to approximate 

the pressure and saturation field (11) at a given 
time step. The inputs are subsequently defined by 
2D spatial variables as follows:  

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

The spatial domain was treated as continuous 
to eliminate the need for a mesh-grid method 
observed in conventional reservoir simulations. 
Moreover, the temporal domain was discretized in 
adherence to standard reservoir simulation 
frameworks where solutions were computed at 
predefined time steps. This discretization reduced 
the dimensions and computing time of the 
problem. The governing equation for each liquid 
phase was formulated into a residual function as 
presented in Equation (12).  

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙

)
𝑡𝑡+1

− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙
)
𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

The residual value ℛ  was evaluated at 
collocation points (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗). 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ (𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

PDEs loss function of the fluid phase ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 
was formulated as the mean square 

error computed from the residuals ℛ  of the 
governing equations. It was systematically 
evaluated at a set of predefined collocation 
points in the domain Ω.  

The initial and boundary conditions were 
necessary to complete PDEs fluid flow equation. 
ANNs were trained on labeled data representing 
the initial conditions in order to estimate the 
pressure distribution 𝑃̂𝑃0 and the saturation 
distributions 𝑆̂𝑆𝑤𝑤0 .  

𝑃̂𝑃0, 𝑆̂𝑆𝑤𝑤0 ≈ 𝑢̂𝑢0(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (14) 

At the reservoir boundary, Dirichlet boundary 
conditions were applied to each liquid phase as 
presented in Equation (15). The two types of 
boundary conditions applied were constant flow 
rate at the wells (inner boundary) and no-flow at 
the reservoir boundaries (outer boundary). 

ℒ𝐵𝐵𝐵𝐵,𝑛𝑛,𝑙𝑙 = 1
𝑁𝑁𝑏𝑏

∑(𝜕𝜕𝑃̂𝑃𝜕𝜕𝜕𝜕 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) + 𝜇𝜇𝑙𝑙𝑣𝑣𝑛𝑛,𝑙𝑙
𝐾𝐾𝑛𝑛𝑘𝑘𝑟𝑟𝑟𝑟

|
𝑘𝑘
)
2𝑁𝑁𝑏𝑏

𝑘𝑘=1
 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘)  ∈ 𝜕𝜕𝜕𝜕 (15)

 

The boundary condition loss function of the 
fluid phase 𝑙𝑙 in a linear direction presented as 𝑛𝑛 in 
ℒ𝐵𝐵𝐵𝐵,𝑛𝑛,𝑙𝑙  was formulated as the mean square 
error computed from the residual values of the 
boundary conditions equations from collocation 
points within the domain boundary 𝜕𝜕Ω. Moreover, 
the radial well blocks had a constant flow rate 
normal to the arc of the well block which allowed 
the flow velocity vector to be decomposed along 
the Cartesian axes. The constant flow rate 
boundary conditions were applied to the well 
block or inner boundary with the loss function 
expressed in the production well as presented in 
Equation (16) and the injection well in Equation 
(17). The inner boundary loss 
function corresponded to the fluid phase of each 
well with the oil phase for production wells and 
the water phase for injection wells. 

ℒ𝐵𝐵𝐵𝐵,𝑃𝑃𝑃𝑃𝑃𝑃 = ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑜𝑜𝑥𝑥 + ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑜𝑜𝑦𝑦 (16) 

ℒ𝐵𝐵𝐵𝐵,𝐼𝐼𝐼𝐼𝐼𝐼 = ℒ𝐼𝐼𝐼𝐼𝐼𝐼,𝑤𝑤𝑥𝑥 + ℒ𝐼𝐼𝐼𝐼𝐼𝐼,𝑤𝑤𝑦𝑦 (17) 

No-flow boundary conditions were applied on 
all four sides of the reservoir boundary as a loss 
function of the outer boundary, including the west 
ℒ𝑤𝑤, north ℒ𝑛𝑛, east ℒ𝑒𝑒 and south ℒ𝑠𝑠. At zero flow 
rates, the pressure gradient was equal to zero. The 
outer boundary loss function, ℒ𝑜𝑜𝑜𝑜, was the sum of 
the mean square errors of the four boundary 
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PDEs loss function of the fluid phase  was 
formulated as the  mean square error  computed 
from the residuals  of the governing equations. 
It was systematically evaluated at a set of 
predefined collocation points in the domain   . 

The initial and boundary conditions were 
necessary to complete PDEs fluid flow equation. 
ANNs were trained on labeled data representing the 
initial conditions in order to estimate the pressure 
distribution and the saturation distributions  
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The residual value ℛ  was evaluated at 
collocation points (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗). 
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PDEs loss function of the fluid phase ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 
was formulated as the mean square 

error computed from the residuals ℛ  of the 
governing equations. It was systematically 
evaluated at a set of predefined collocation 
points in the domain Ω.  

The initial and boundary conditions were 
necessary to complete PDEs fluid flow equation. 
ANNs were trained on labeled data representing 
the initial conditions in order to estimate the 
pressure distribution 𝑃̂𝑃0 and the saturation 
distributions 𝑆̂𝑆𝑤𝑤0 .  

𝑃̂𝑃0, 𝑆̂𝑆𝑤𝑤0 ≈ 𝑢̂𝑢0(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (14) 

At the reservoir boundary, Dirichlet boundary 
conditions were applied to each liquid phase as 
presented in Equation (15). The two types of 
boundary conditions applied were constant flow 
rate at the wells (inner boundary) and no-flow at 
the reservoir boundaries (outer boundary). 

ℒ𝐵𝐵𝐵𝐵,𝑛𝑛,𝑙𝑙 = 1
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𝑘𝑘
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𝑘𝑘=1
 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘)  ∈ 𝜕𝜕𝜕𝜕 (15)

 

The boundary condition loss function of the 
fluid phase 𝑙𝑙 in a linear direction presented as 𝑛𝑛 in 
ℒ𝐵𝐵𝐵𝐵,𝑛𝑛,𝑙𝑙  was formulated as the mean square 
error computed from the residual values of the 
boundary conditions equations from collocation 
points within the domain boundary 𝜕𝜕Ω. Moreover, 
the radial well blocks had a constant flow rate 
normal to the arc of the well block which allowed 
the flow velocity vector to be decomposed along 
the Cartesian axes. The constant flow rate 
boundary conditions were applied to the well 
block or inner boundary with the loss function 
expressed in the production well as presented in 
Equation (16) and the injection well in Equation 
(17). The inner boundary loss 
function corresponded to the fluid phase of each 
well with the oil phase for production wells and 
the water phase for injection wells. 

ℒ𝐵𝐵𝐵𝐵,𝑃𝑃𝑃𝑃𝑃𝑃 = ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑜𝑜𝑥𝑥 + ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑜𝑜𝑦𝑦 (16) 

ℒ𝐵𝐵𝐵𝐵,𝐼𝐼𝐼𝐼𝐼𝐼 = ℒ𝐼𝐼𝐼𝐼𝐼𝐼,𝑤𝑤𝑥𝑥 + ℒ𝐼𝐼𝐼𝐼𝐼𝐼,𝑤𝑤𝑦𝑦 (17) 

No-flow boundary conditions were applied on 
all four sides of the reservoir boundary as a loss 
function of the outer boundary, including the west 
ℒ𝑤𝑤, north ℒ𝑛𝑛, east ℒ𝑒𝑒 and south ℒ𝑠𝑠. At zero flow 
rates, the pressure gradient was equal to zero. The 
outer boundary loss function, ℒ𝑜𝑜𝑜𝑜, was the sum of 
the mean square errors of the four boundary 

At the reservoir boundary, Dirichlet boundary 
conditions were applied to each liquid phase as 
presented in Equation (15). The two types of 
boundary conditions applied were constant flow 
rate at the wells (inner boundary) and no-flow at the 
reservoir boundaries (outer boundary).

(14)𝑃̂𝑃0, 𝑆̂𝑆𝑤𝑤0 ≈ 𝑢̂𝑢0(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (14) 

 

ℒ𝐵𝐵𝐵𝐵,𝑛𝑛,𝑙𝑙 = 1
𝑁𝑁𝑏𝑏

∑(𝜕𝜕𝑃̂𝑃𝜕𝜕𝜕𝜕 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘) + 𝜇𝜇𝑙𝑙𝑣𝑣𝑛𝑛,𝑙𝑙
𝐾𝐾𝑛𝑛𝑘𝑘𝑟𝑟𝑟𝑟

|
𝑘𝑘
)
2𝑁𝑁𝑏𝑏

𝑘𝑘=1
 (𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘)  ∈ 𝜕𝜕𝜕𝜕 (15)

 

 

ℒ𝐵𝐵𝐵𝐵,𝑃𝑃𝑃𝑃𝑃𝑃 = ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑜𝑜𝑥𝑥 + ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑜𝑜𝑦𝑦 (16) 
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ℒ𝐵𝐵𝐵𝐵,𝑂𝑂𝑂𝑂 = ℒ𝑤𝑤,𝑜𝑜𝑥𝑥 + ℒ𝑤𝑤,𝑤𝑤𝑥𝑥 + ℒ𝑛𝑛,𝑜𝑜𝑦𝑦 + ℒ𝑛𝑛,𝑤𝑤𝑦𝑦

+ℒ𝑒𝑒,𝑜𝑜𝑥𝑥 + ℒ𝑒𝑒,𝑤𝑤𝑥𝑥 + ℒ𝑠𝑠,𝑜𝑜𝑦𝑦 + ℒ𝑠𝑠,𝑤𝑤𝑦𝑦 (18) 

 

 

 

 

 

𝑃̂𝑃0, 𝑆̂𝑆𝑤𝑤0 ≈ 𝑢̂𝑢0(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (14) 
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)
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The boundary condition loss function of the 
fluid phase in a linear direction presented as  in  
was formulated as the mean square error computed 
from the residual values of the boundary conditions 
equations from collocation points within the 
domain boundary . Moreover, the radial well 
blocks had a constant flow rate normal to the arc 
of the well block which allowed the flow velocity 
vector to be decomposed along the Cartesian axes. 
The constant flow rate boundary conditions were 
applied to the well block or inner boundary with 
the loss function expressed in the production well 
as presented in Equation (16) and the injection 
well in Equation (17). The inner boundary loss 
functioncorresponded to the fluid phase of each 
well with the oil phase for production wells and 
the water phase for injection wells.

No-flow boundary conditions were applied on all 
four sides of the reservoir boundary as a loss function 
of the outer boundary, including the west , north , east  

and south . At zero flow rates, the pressure gradient 
was equal to zero. The outer boundary loss function, 
was the sum of the mean square errors of the four 
boundary conditions as presented in (18). This was 
in line with the normal flow direction towards the 
reservoir boundary for each phase. The west and east 
sides were in the x direction while the north and south 
were in the y direction.

 First Author et al. / Mechatronics, Electrical Power, and Vehicular Technology XX (20XX) XX-XX 
 

 

 
 
Figure 1. Conceptual reservoir model for two-

dimensional linear flow 

 
Neural networks were trained to approximate 

the pressure and saturation field (11) at a given 
time step. The inputs are subsequently defined by 
2D spatial variables as follows:  

𝑃̂𝑃, 𝑆̂𝑆𝑤𝑤 ≈ 𝑢̂𝑢(𝑥𝑥, 𝑦𝑦, 𝜃𝜃) (11) 

The spatial domain was treated as continuous 
to eliminate the need for a mesh-grid method 
observed in conventional reservoir simulations. 
Moreover, the temporal domain was discretized in 
adherence to standard reservoir simulation 
frameworks where solutions were computed at 
predefined time steps. This discretization reduced 
the dimensions and computing time of the 
problem. The governing equation for each liquid 
phase was formulated into a residual function as 
presented in Equation (12).  

ℛ(𝑃𝑃, 𝑆𝑆𝑙𝑙) = 𝛻𝛻 ∙ (𝑘𝑘𝑟𝑟𝑟𝑟
(𝑆𝑆𝑙𝑙𝑡𝑡+1)
𝐵𝐵𝑙𝑙𝑡𝑡 𝜇𝜇𝑙𝑙

𝛻𝛻𝑃𝑃𝑡𝑡)

−
(𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙

)
𝑡𝑡+1

− (𝜙𝜙𝑆𝑆𝑙𝑙𝐵𝐵𝑙𝑙
)
𝑡𝑡

𝛥𝛥𝛥𝛥  (12)

 

The residual value ℛ  was evaluated at 
collocation points (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗). 

ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 = 1
𝑁𝑁𝑑𝑑

∑(ℛ (𝑃̂𝑃(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗), 𝑆̂𝑆𝑙𝑙(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)))
2

𝑁𝑁𝑑𝑑

𝑗𝑗=1
,

 (𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)  ∈ 𝛺𝛺 (13)
 

PDEs loss function of the fluid phase ℒ𝑃𝑃𝑃𝑃𝑃𝑃,𝑙𝑙 
was formulated as the mean square 

error computed from the residuals ℛ  of the 
governing equations. It was systematically 
evaluated at a set of predefined collocation 
points in the domain Ω.  

The initial and boundary conditions were 
necessary to complete PDEs fluid flow equation. 
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At the reservoir boundary, Dirichlet boundary 
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presented in Equation (15). The two types of 
boundary conditions applied were constant flow 
rate at the wells (inner boundary) and no-flow at 
the reservoir boundaries (outer boundary). 
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The boundary condition loss function of the 
fluid phase 𝑙𝑙 in a linear direction presented as 𝑛𝑛 in 
ℒ𝐵𝐵𝐵𝐵,𝑛𝑛,𝑙𝑙  was formulated as the mean square 
error computed from the residual values of the 
boundary conditions equations from collocation 
points within the domain boundary 𝜕𝜕Ω. Moreover, 
the radial well blocks had a constant flow rate 
normal to the arc of the well block which allowed 
the flow velocity vector to be decomposed along 
the Cartesian axes. The constant flow rate 
boundary conditions were applied to the well 
block or inner boundary with the loss function 
expressed in the production well as presented in 
Equation (16) and the injection well in Equation 
(17). The inner boundary loss 
function corresponded to the fluid phase of each 
well with the oil phase for production wells and 
the water phase for injection wells. 
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No-flow boundary conditions were applied on 
all four sides of the reservoir boundary as a loss 
function of the outer boundary, including the west 
ℒ𝑤𝑤, north ℒ𝑛𝑛, east ℒ𝑒𝑒 and south ℒ𝑠𝑠. At zero flow 
rates, the pressure gradient was equal to zero. The 
outer boundary loss function, ℒ𝑜𝑜𝑜𝑜, was the sum of 
the mean square errors of the four boundary 
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conditions as presented in (18). This was in line 
with the normal flow direction towards the 
reservoir boundary for each phase. The west and 
east sides were in the x direction while the north 
and south were in the y direction. 

ℒ𝐵𝐵𝐵𝐵,𝑂𝑂𝑂𝑂 = ℒ𝑤𝑤,𝑜𝑜𝑥𝑥 + ℒ𝑤𝑤,𝑤𝑤𝑥𝑥 + ℒ𝑛𝑛,𝑜𝑜𝑦𝑦 + ℒ𝑛𝑛,𝑤𝑤𝑦𝑦

+ℒ𝑒𝑒,𝑜𝑜𝑥𝑥 + ℒ𝑒𝑒,𝑤𝑤𝑥𝑥 + ℒ𝑠𝑠,𝑜𝑜𝑦𝑦 + ℒ𝑠𝑠,𝑤𝑤𝑦𝑦  (18) 

The steps to determine a solution using PINN 
algorithm are outlined in Figure 2. First, a neural 
network 𝑢̂𝑢(𝑥𝑥,𝑦𝑦,𝜃𝜃)  was constructed to 
approximate the solution 𝑃𝑃(𝑥𝑥,𝑦𝑦) and 𝑆𝑆𝑤𝑤(𝑥𝑥,𝑦𝑦) . 
The network parameters 𝜃𝜃 = {𝑤𝑤ℓ, 𝑏𝑏ℓ} for 1 ≤
ℓ ≤ 𝐿𝐿 consisted of the weight matrices and bias 
vectors of the neural network used in the 

approximation 𝑢̂𝑢. The next step was to constrain 
the neural network in order to satisfy the physical 
laws governed by PDEs and the boundary 
conditions. The training dataset consisted of two 
subsets which were the points in the interior 
domain and those on the boundary. These were 
generated using randomly sampled collocation 
points. Furthermore, an optimization procedure 
was executed to identify optimal parameters 𝜃𝜃 by 
minimizing the loss function ℒ(𝑥𝑥,𝑦𝑦,𝜃𝜃)  through 
the process known as training. The highly 
nonlinear and non-convex nature of the loss 
landscape with respect to 𝜃𝜃  led to minimization 
which was performed using gradient-based 
optimization methods such as Adam, BFGS and 
L-BFGS (Lu et al., 2021). 

 
 

 
 
Figure 2. Workflow to solve two-phase fluid flow through porous media equations using PINN 

 
The fully implicit method requires the neural 

network to simultaneously solve the coupled 
distributions of pressure and saturation at the same 
time. ANNs shared the same input layers but had 
separate output layers for pressure and saturation 
distribution, respectively. These two outputs 
represented distinct problem-solving 
characteristics which included one for flow 
problems and the other for transport problems. 
Meanwhile, the solution search for the two 
problems has the possibility of interfering with 
each other depending on the network topology 
adopted. This study presents three distinct ANNs 
topologies based on hidden layer configurations 
presented in Figure 3 and explained as follows: 
1. Single-row layers (N1): There was no 

separation between layers for solving pressure 
and saturation distributions because both were 
computed in the same layer.  

2. Dual-rows layers (N2): The layer for pressure 
distribution solution was separated from the 
layer for saturation solution which led to two 
sets of hidden networks with the same input. 

3. Branched layers (NY): A common initial layer 
followed the input layer and subsequently 
diverged into two dedicated branches for 
pressure and saturation solutions. 

The achievement of optimal training of PINN 
generally requires normalizing inputs to a smaller 
range (e.g., [0,1] or [-1,1]). This enhanced 
numerical stability, accelerated convergence, and 
mitigated risks such as vanishing or exploding 
gradients. PINN combined the losses from 
physical data, PDEs residuals and observational 
data. This was necessary because unnormalized 
input variables could lead to imbalanced residual 
scales to destabilize the optimization. 
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was executed to identify optimal parameters 𝜃𝜃 by 
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diverged into two dedicated branches for 
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The fully implicit method requires the neural 
network to simultaneously solve the coupled 
distributions of pressure and saturation at the same 
time. ANNs shared the same input layers but had 
separate output layers for pressure and saturation 
distribution, respectively. These two outputs 
represented distinct problem-solving characteristics 
which included one for flow problems and the other 
for transport problems. Meanwhile, the solution 
search for the two problems has the possibility 
of interfering with each other depending on the 
network topology adopted. This study presents three 
distinct ANNs topologies based on hidden layer 
configurations presented in Figure 3 and explained 
as follows:



137

A Fully Implicit Reservoir Simulation Using Physics Informed Neural Networks (Agus Wahyudi et al.)

DOI org/10.29017/scog.v48i3.1858 |

Figure 2. Workflow to solve two-phase fluid flow through porous media equations using PINN

 

1). Single-row layers (N1): There was no 
separation between layers for solving pressure and 
saturation distributions because both were computed 
in the same layer; 2). Dual-rows layers (N2): The 
layer for pressure distribution solution was separated 
from the layer for saturation solution which led to 
two sets of hidden networks with the same input; 
3). Branched layers (NY): A common initial layer 
followed the input layer and subsequently diverged 
into two dedicated branches for pressure and 
saturation solutions.

The achievement of optimal training of PINN 
generally requires normalizing inputs to a smaller 
range (e.g., [0,1] or [-1,1]). This enhanced numerical 
stability, accelerated convergence, and mitigated 
risks such as vanishing or exploding gradients. 
PINN combined the losses from physical data, PDEs 
residuals and observational data. This was necessary 
because unnormalized input variables could lead 
to imbalanced residual scales to destabilize the 
optimization.

Each of the topologies includes additional layers 
after the input layer and before the output layer as 
shown in Figure 3(a). The layers rescaled the values 
to be in line with ANNs characteristics as follows: 
1). Input rescaling layer, , transformed the input 
coordinates (x, y) into the range (0,1); 2). Output 
rescaling layers mapped the (0,1) output range back 
to the physical scales of solution distributions where  
was for pressure distribution and  for saturation 
distribution.

 

Figure 3. Neural Network topology: (a) Basic network 
configuration, (b) single row layer N1, (c) dual row layer 

N2, (d) branched layer NY 
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RESULT AND DISCUSSION
The three topologies mentioned were 

implemented into nine neural network configurations 
with each having varying numbers of hidden layers 
and neurons per layer. The number of layers and 
neurons differed but the total number of weights and 
biases did not vary significantly. The smallest number 
of weights and biases was in model N2-1 with 4,284 
variables while the largest was in N2-3 with 4,366.

In N1 topology, the network chain was not 
separated into the network for solving pressure and 
saturation distributions. This led to the production 
of two configurations in the form of models N1-1 
and N1-2. Meanwhile, N2 separated the network 
chain into distinct networks which led to the 
production of three configurations, including 
models N2-1, N2-2, and N2-3.

Table 1. Number of hidden layers and variables 

 
No Model 

No. of Hidden 
Layer �𝐯𝐯𝐯𝐯𝐯𝐯  

 Com Pres Sat   
 1 N1-1 4 - - 4365  
 2 N1-2 6 - - 4349  
 3 N2-1 - 3 3 4284  
 4 N2-2 - 4 4 4364  
 5 N2-3 - 5 5 4366  
 6 NY-1 1 5 5 4302  
 7 NY-2 1 3 3 4344  
 8 NY-3 2 2 2 4293  
 9 NY-4 3 1 1 4287  

 

The final NY topology featured a common 
layer that branched into pressure and saturation 
layers. This led to the design of four neural network 
configurations including NY-1, NY-2, NY-3, and 
NY-4. The number of layers and neurons per layer is 
presented in Table 1. The differences in the number of 
layers and neurons while a relatively similar number 
of variables was maintained led to different network 
architectures, including wide-shallow, narrow-deep, 
or intermediate structures. The performance of each 
topology and its configurations was subsequently 
evaluated based on convergence speed and accuracy.

Initial condition training
Initial conditions define the state of the reservoir 

at time zero before any production or injection 
starts in a two-phase oil-water reservoir simulation. 
The settings are the critical starting point for the 

simulation to predict the behavior of the reservoir 
over time. The two most fundamental initial 
conditions are pressure and saturation. The fluids in 
the reservoir are typically assumed to be in a state 
of hydrostatic equilibrium which is uniform in a 2D 
aerial model. This shows that the initial saturation is 
not uniform. The water zone with a specific focus on 
the area surrounding an injection well is assigned a 
water saturation equal to . Meanwhile, the oil zone 
is initialized with the connate water saturation as 
presented in Figure 4.

Figure 4. Initial conditions for pressure and water saturation 
distribution

 

Each NN model from the three topologies was 
trained to approximate the initial conditions using 
BFGS optimizer with 20 iterative optimization steps. 
The loss function history of the initial conditions is 
presented in Figure 5 while the final loss values are 
summarized in Table 2.
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Figure 5. Initial BC Loss History

 

Training. nth

The loss curve shows that model NY-1 achieves 
the fastest convergence by maintaining relatively low 
loss values from the initial iterations. The information 
in Table 1 showed that three models exhibited 
significantly small loss values with N1-2 recording 
2.750×10⁻¹¹ and NY-1  had 2.771×10⁻¹¹ primarily 
due to the saturation (Sw) component. However, the 
comparison of the pressure (P) losses showed that 
NY-1 outperformed N1-2 with a smaller value. The 
low initial BC loss value showed the effectiveness of 
ANNs as an effective approximator for the solution. 
The loss values in Table 2 reflected the ability of 
NY to produce better approximations compared 
to N1 and N2. All initial models were subsequently 
trained in PINN framework to solve the pressure and 
saturation distributions for the next timestep. The 
training was governed by the two-phase (oil-water) 
flow equations in porous media.

Table 2. Initial condition loss function values

   Model          𝓛𝓛𝑷𝑷𝟎𝟎            𝓛𝓛𝑺𝑺𝑺𝑺𝟎𝟎  𝓛𝓛𝑷𝑷𝟎𝟎 � 𝓛𝓛𝑺𝑺𝑺𝑺𝟎𝟎  

 N1-1 7.934e-11 2.325e-09 2.404e-09  

 N1-2 1.181e-13 2.738e-11 2.750e-11  

 N2-1 5.657e-14 1.009e-10 1.009e-10  

 N2-2 2.793e-15 2.289e-09 2.289e-09  

 N2-3 6.311e-15 4.047e-11 4.048e-11  

 NY1 2.566e-15 2.771e-11 2.771e-11  

 NY2 2.706e-15 9.097e-11 9.098e-11  

 NY3 3.266e-15 3.916e-10 3.916e-10  

 NY4 1.580e-13 1.289e-09 1.289e-09  
 

Solutions using N1 topology
The two ANNs in N1 topology were trained 

to solve two-phase flow equations using PINN 
framework. This numerical model solved the 
governing equations for pressure and saturation 
distributions simultaneously within a single row 
computational layer. N1-1 featured a relatively 
shallow and wide architecture with fewer hidden 
layers but more neurons per layer. Meanwhile, 
N1-2 adopted a deeper and narrower topology that 
comprised more hidden layers with fewer neurons 
per layer.

The training process was conducted by applying 
BFGS optimizer to 70 iterations with the loss 
function history presented in Figure 6. The solutions 
at the 70th iteration are shown in Figure 7 with the 
pressure and saturation distributions from both N1-1 
and N1-2 models presented alongside the numerical 
reference for comparison.

Both PINN solutions showed significantly 
similar pressure and saturation distributions which 
were in excellent agreement with the reference. N1-2 
achieved faster convergence than N1-1 as evidenced 
by the lower loss function values particularly after the 
13th iteration and production of solutions that more 
closely matched the numerical reference at the 70th 
iteration. The pressure solution from N1-1 exhibited 
minor discrepancies near the injection well area. 
The continuous optimization of N1-1 could achieve 
comparable convergence to N1-2 but would require 
additional iterations. The pressure distribution and 
water saturation from an aerial perspective of the 
final solutions for N1-2 are shown in Figure 8.
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Figure 6. Loss history of N1 topology at timestep t+1

 

Figure 7. Solution of the N1 topology at timestep t+1

 

Pressure Distribution Comparison N1

Water Saturation Distribution Comparison N1
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Figure 9. Interference on pressure distribution: (a). Effect 
of saturation distribution pattern (b). Comparison with 

reference solution

Figure 8. Solutions of the N1-2 model

 

The results showed that the deeper and narrower 
architecture of N1-2 had superior performance in 
both accuracy and convergence speed for two-phase 
flow solutions compared to the shallower-wider N1-1 
configuration. However, the model contained the risk 
of interference between the pressure and saturation 
solutions during training.

Solutions using N2 topology
N2 topology was implemented in three distinct 

ANNs architectures which were designated as N2-1, 
N2-2, and N2-3. N2-1 model featured a relatively 
shallow and wide architecture for both pressure and 
saturation chains while N2-3 adopted a deep and 
narrow topology for both network branches. N2-2 
represented an intermediate configuration between 
these two extremes.

The training process was based on a two-stage 
method and each stage consisted of 100 iterative 
optimizations using BFGS algorithm. The loss 
function history is presented in Figure 10 while the 
solutions at the 100th iterations are in Figure 11 with 
a focus on the pressure and saturation distributions 
from all three N2 models alongside the numerical 
reference for comparative analysis.

The three N2 topology models produced PINN 
solutions with nearly identical pressure and saturation 
distributions. The curvature patterns of the solution 
distributions matched the reference but significant 
value discrepancies were observed. The loss function 
history curves showed slow convergence rates with 
minimal improvement evident when comparing 
solutions at iterations 50 and 100.

The achievement of converged solutions that 
properly matched the reference with the topology 
had a lower possibility. The process would require 
a substantially higher number of iterations to attain 
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the solutions. N2 architecture demanded significantly 
more iterations compared to the others but produced 
solutions with considerable deviations from the 
reference values.

Solutions using NY topology
This study developed four ANNs models with 

an NY topology to examine the effects of layer 
configuration, neuron count, and branching position. 
NY-1 had a deep, narrow architecture that consisted 
of one common layer followed by branching and 
five solution layers to produce a substantially longer 
solution network than the common model. NY-2 
maintained a similar structure with one common 
layer and three solution layers but with a shorter, 
wider configuration. NY-3 showed a balanced layer 
distribution between common and solution networks. 
Meanwhile, NY-4 incorporated more common layers 
than solution layers. All the latter three models NY-
2, NY-3, and NY-4 exhibited relatively shallow and 
wide architectural characteristics.

Training was conducted using BFGS optimizer 
for 50 iterations with the loss function history 
presented in Figure 12. The solutions obtained at the 
50th iteration are shown in Figure 13 with a focus 
on the pressure and saturation distributions from all 
four NY models alongside the numerical reference.

Figure 13 shows that the curves of all the models 
exhibit excellent agreement with the reference from 
the numerical solution. The variations in the number 

Figure 10. Loss history of the N2 topology at timestep t+1

 

of layers and neurons had minimal influence on 
solution quality. Moreover, the deep-narrow NY-1 
architecture produced curves which was most closely 
in line with the reference solution and represented 
the best-performing configuration. The model also 
achieved the lowest loss function values as reflected 
in the loss history. At timestep t+1, the NY topology 
generally showed faster convergence and higher 
accuracy compared to both N1 and N2.

The training results for all models at timestep 
t+1 are summarized in Figure 14. The boxplot in 
Figure 14(a) presents the average computation time 
per iteration while the bar chart shows the total 
number of iterations. Model N1-2 in N1 topology 
which produced a convergent solution required 
more computation time than N1-1. The same trend 
was observed in NY topology where NY-1 produced 
the highest accuracy but demanded longer training 
time than other comparable models. In N2 topology, 
the solution did not converge while NY-1 showed a 
higher average computation time per iteration than 
other models. Model configurations with deeper and 
narrower neural network layers (i.e., more layers 
with fewer units per layer) generally required longer 
training times. This was attributed to the extended 
computations in both the forward and backward 
propagation steps. Figure 14(b) further shows that 
deep-narrow architectures such as N1-2, N2-3, and 
NY-1 achieve higher accuracy compared to shallow-
wide configurations.
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Figure 12. Loss history of the NY topology at timestep t+1

 

Figure 11. Solutions of the N2 topology at timestep t+1
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Figure 13. Solution of NY topology at timestep t+1

 

Figure 14. Training at timestep t+1: (a). Mean CPU time and number of iterations, (b). Loss fraction value
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Subsequent training
The training was extended to solve the fluid 

flow equations at timestep t+2 using three selected 
models, including N1-2, NY-1, and NY-3. The 
models had previously solved the flow equations at 
timestep t+1 with high accuracy, thereby providing 
validated neural networks suitable for use as initial 
conditions in the subsequent timestep. The use of 
non-convergent or low-accuracy networks was also 
avoided to minimize the error propagation across 
timesteps. The neural network model obtained from 

the previous training step was retrained to perform 
tasks at the subsequent timestep while an identical 
copy was used as the initial condition for pressure 
and saturation. As shown in Figure 16, the pressure 
and saturation distribution curves of N1-2 coincide 
with the reference solution which shows superior 
accuracy with the loss function values less than 1.0 
e-10. Meanwhile, NY-1 and NY-3 showed higher loss 
function values at timestep t+1 compared to other 
FNN models and further amplified in the subsequent 
timestep.

Figure 15. Loss history at timestep t+2

 

Figure 16. Solutions at timestep t+2
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CONCLUSION
In conclusion, this study presented a PINN-

based fully implicit method for solving two-
phase immiscible fluid flow equations. FNN was 
effectively modeled to capture spatial and reservoir 
dynamics without requiring observational data or 
grid discretization. The branched-topology FNN 
architecture improved stability and convergence 
by minimizing interference between pressure and 
saturation distributions. It was also observed that 
the number of hidden layers critically influenced 
both convergence speed and accuracy. The proposed 
method showed strong potential for advancing 
machine learning–based PDEs solvers but required 
further improvements particularly in reducing 
computational costs.
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GLOSSARY OF TERMS

 Symbol Definition Unit  

 K Permeability mD  
 𝒌𝒌𝒓𝒓 Relative permeability   
 𝑺𝑺 Fluid saturation   
 𝑺𝑺𝒐𝒐𝒐𝒐 Residual oil saturation   
 𝑺𝑺𝒘𝒘𝒘𝒘 Connate water 

saturation
  

 𝝁𝝁 Viscosity cp  
 ϕ Porosity
 𝝆𝝆 Density 𝑙𝑙𝑙𝑙

/𝑓𝑓𝑡𝑡� 
 

 𝒄𝒄 Compressibility 1/𝑝𝑝𝑝𝑝𝑝𝑝  
 𝑷𝑷 Pressure psi  
 𝑩𝑩 Formation volume 

factor
  

 𝒗𝒗 Velocity ft/d  
 𝒕𝒕 Time day  
 𝓡𝓡 Residual error   
 𝓛𝓛 Loss function    
 𝜽𝜽 Network parameter   
 𝒘𝒘 Layer weight   
 𝒃𝒃 Layer bias   
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