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ABSTRACT - The accuracy of multiphase flow simulation in porous media is critical for reservoir
management but the achievement is challenging due to the nonlinear, coupled nature of the governing
equations and truncation errors inherent in mesh-based numerical solvers. Therefore, this study aims to present
a mesh-free, fully implicit Physics-Informed Neural Network (PINN) framework for two-phase immiscible
oil-water flow. The framework has feedforward neural networks which simultaneously approximate the
continuous pressure and saturation fields while embedding the governing partial differential equations
(PDESs), boundary conditions, and initial conditions directly into the loss function. Moreover, three network
topologies in the form of single-row (N1), dual-row (N2), and branched-layer (NY) are evaluated across
nine configurations with different architectural variants. The key novelty is in the fully implicit formulation
of branched network architectures which effectively minimizes interference between pressure and saturation
predictions. The benchmarking against the commercial simulator Eclipse® shows that NY configuration
achieves the best performance with a mean squared error below 1.0e-10. N1 architecture also provides
superior stability across successive time steps, while N2 exhibits slower convergence. Deep and narrow
architectures produce higher accuracy but require approximately twice the computational cost per iteration.
The results show that the proposed PINN-based framework produces high-fidelity solutions for complex
reservoir problems without depending on spatial meshing despite higher computational demands. This
offers a promising alternative to conventional numerical methods for both regular and irregular geometries.

Keywords: reservoir simulation, fully implicit, physics-informed neural networks.

© SCOG - 2025

How to cite this article:

Agus Wahyudi, Tutuka Ariadji, Taufan Marhaendrajana, Kuntjoro Adji Sidarto, and Zuher Syihab,
2025, A Fully Implicit Reservoir Simulation Using Physics Informed Neural Networks, Scientific
Contributions Oil and Gas, 48 (3) pp. 131-147. DOI org/10.29017/scog.v48i3.1858.

DOI org/10.29017/scog.v48i3.1858 | 131



Scientific Contributions Oil & Gas, Vol. 48. No. 3, October 2025: 131 - 147

INTRODUCTION

The flow of fluids through porous media is
a fundamental phenomenon in several natural
and industrial processes, including groundwater
hydrology, oil recovery, and chemical engineering.
Porous media flow is the movement of fluids through
materials containing interconnected voids or pores
such as soil, sandstone, or synthetic membranes.
In petroleum engineering and hydrogeology, the
understanding of multiphase flow with a specific
focus on the simultaneous flow of oil and water is
very important for effective reservoir management
and environmental remediation (Cai & Berg 2025).
The flow of two immiscible fluids such as oil and
water through a porous medium causes an interaction
with the solid matrix and each other (Buckley
& Leverett 1942). This behavior is governed by
several key phenomena. For example, the interfacial
tension and wettability often experienced lead to
the tendency of one fluid, typically water, to wet
the surface of the pores and produce cAmerican
petroleum institute llary forces that influence phase
distribution (Alizadeh & Fatemi 2021). The ability
of each fluid to flow is reduced due to the presence
of the other phase which is quantified by relative
permeability functions (Corey et al., 1956; Goda
& Behrenbruch 2004). This shows that each fluid
occupies a fraction of the pore volume defined as
saturation. Moreover, the sum of the saturations of
oil and water is required to equal unity.

The equations governing fluid flow in porous
media, including single-phase and multiphase,
are typically described by nonlinear and coupled
partial differential equations (PDEs). However,
analytical solutions are generally not feasible due to
the nonlinear and coupled nature of the equations,
except in highly simplified cases (Abou-Kassem et
al., 2020). This leads to the preference for numerical
methods. For example, Finite Difference Method
(FDM) and Finite Volume Method (FVM) are
common discretization methods for spatial domains.
Implicit Pressure, Explicit Saturation (IMPES)
and Fully Implicit Method (FIM) schemes are
widely used time-integration methods (Jenny et al.,
2006; Moncorgé et al., 2018; Younis et al., 2010).
These numerical solutions are approximations that
introduce errors due to truncation of the Taylor
series during discretization and linearization
compared to the exact analytical solutions (Tijink
& Cottier 2019). Therefore, boundary (Dirichlet or
Neumann) and initial conditions (initial saturation
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and pressure distributions) need to be specified in
the process of solving the models. Two-phase flow
of oil and water in porous media is a complex but
well-studied process governed by conservation
laws and Darcy’s law with important applications
in energy and environmental fields. The accurate
modeling requires detailed characterization of the
porous medium and fluid properties as well as the
adoption of robust mathematical methods for solving
the coupled nonlinear equations.

Artificial Neural Networks (ANNSs) have shown
considerable potential in solving PDEs by leveraging
their capacity as universal function approximators
(Long et al., 2019; Sirignano & Spiliopoulos 2018).
This is associated with the ability to offer a mesh-
free framework in providing solutions compared
to traditional numerical methods which depend on
discretization techniques such as finite difference or
finite element (Berrone & Pintore 2024; Diab et al.,
2022). The process is achieved by approximating the
solution function over the domain directly through
training a neural network to satisfy the governing
equations as well as the boundary and initial
conditions (Lu et al., 2021).

The key advantage of using ANNs for PDEs is
in the ability to generalize over the input domain
and represent complex nonlinear mappings with
a relatively compact model (Raissi et al., 2019).
This leads to the specific usefulness for high-
dimensional problems and scenarios related to sparse
or scattered data where conventional methods are
computationally expensive or unstable. Moreover,
ANNs can be trained to provide continuous,
differentiable solutions across the entire domain
which is advantageous for problems requiring
gradient information.

A foundational work in this domain was
conducted by Lagaris et al. who introduced a
method for solving both ordinary and PDEs using
feedforward neural networks (Lagaris et al., 1998).
The method focused on training the network to
minimize the residual of PDEs and inherently
satisfied boundary conditions through a carefully
designed trial function. This marked an important
step in integrating machine learning methods into
numerical analysis.

More recent developments include Physics-
Informed Neural Network (PINN) framework where
the loss function of ANNS is constructed to include
PDEs residuals and any relevant physical constraints
using automatic differentiation (Raissi et al., 2019).
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This method has shown success in different forward
and inverse problems associated with complex
PDE:s in fields such as fluid dynamics, elasticity,
and heat conduction. ANNs have shown promise
in approximating the solutions of such complex
systems due to the ability to learn from data and
capture nonlinear relationships without depending on
mesh-based discretization. In the context of porous
media, this capability becomes specifically valuable
when focusing on heterogeneous properties, irregular
geometries, and limited observational data. Recent
studies have successfully applied PINN to simulate
fluid flow in porous structures. For example, Zhu et
al. (2021) applied PINN to model single-phase flow
through heterogeneous porous media by encoding
the governing PDEs and boundary conditions into
the neural network loss function. Zhang et al. (2024)
extended the method to multiphase flow scenarios
to show the ability in capturing saturation fronts and
pressure distributions effectively. ANNs were also
useful in building the model for the prediction of
wax deposition rate in two-phase flow, total organic
carbon and forecasting reservoir performances
during the carbon capture, utilization, and storage
(Iskandar & Kurihara 2022; Septiano et al., 2021;
Wardhana et al., 2021). The results show that ANNs
and PINN are promising alternatives to traditional
numerical solvers for simulating porous media flows
with advantages in flexibility, generalizability, and
the ability to incorporate sparse data (Fraces et al.,
2020; Fraces & Tchelepi 2021; Fuks & Tchelepi
2020; Shukla et al., 2021).

The application of PINN to solve PDEs has
experienced rAmerican petroleum institute d growth
but the adoption for strongly coupled nonlinear
systems such as two-phase flow in porous media
remains challenging. A critical and underexplored
aspect is the design of optimal neural network
architectures for those types of systems. Specifically,
the standard Fully Connected Neural Network
(FNN) with multiple outputs is often adopted to
simultaneously predict pressure and saturation
distributions. However, the variables exhibit
fundamentally different characteristics. This is
observed from the fact that pressure is typically
elliptic in nature and tends to be smooth and global
while saturation is hyperbolic, often exhibits sharp
fronts, and is more locally influenced. The efforts to
force a single, shared-parameter backbone network to
learn the disparate physical behaviors can introduce a
high risk of feature interference and gradient conflict
during training. The process is capable of leading to

unstable convergence or failure to find a solution that
satisfies both governing equations simultaneously.
Therefore, a significant study gap exists in the
development and evaluation of specialized FNN
topologies with a specific focus on branched or
multi-path architectures that can effectively minimize
interference between the pressure and saturation
solutions to enhance the robustness and accuracy of
PINN for fully implicit, two-phase flow simulations.

This study investigates the application of PINN
for mesh-free simulation of two-phase flow in
porous media. The primary objective is to solve
coupled nonlinear PDEs governing fluid flow to
obtain simultaneous, fully implicit solutions for
the spatial distributions of pressure and saturation.
A critical secondary objective is to determine the
optimal FNN architecture for the multi-physics
problem. This requires a comparative analysis of
network topologies with an emphasis on the efficacy
of monolithic versus branched designs to mitigate
gradient conflict between the distinct physical
variables and ensure robust convergence. The model
incorporates well constraints with source and sink
terms representing an injector and a producer. The
spatial domain is treated as continuous to eliminate
the need for a mesh-grid method as required in
conventional reservoir simulations. Therefore,
this method avoids truncation errors and improves
solution accuracy. The predictive accuracy and
convergence performance of different architectures
evaluated based on hyperparameters such as depth
and width are rigorously benchmarked against
solutions from the industry-standard numerical
simulator known as Eclipse.

Background

The governing equation for two-phase flow
in porous media is achieved by combining mass
conservation and Darcy’s law (Abou-Kassem et al.,
2020). The fluid phases of oil and water as well as
the cAmerican petroleum institute llary pressure
are considered to be neglected. Therefore, Darcy's
equations and the standard black oil fluid model are
substituted into the continuity equations to produce
the following mass balance for each phase as in
Equations 1 and 2.

7. (K Pk (S) |7P> _ 3(p®S))
7 ot
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(1)
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where, K represents the absolute permeability vector
of the reservoir rock and the relative permeability of
a fluid phase is dependent on its saturation. Density
viscosity , and porosity ¢ varies with pressure . The
subscript / denotes the liquid phase which includes
oil o and water w. Moreover, V signifies the spatial
gradient and 0/0¢ is the partial time derivative. In a
displacement process where water replaces oil in a
fully oil-saturated porous medium, two-phase flow
behavior produced is characterized by the drainage
relative permeability curve. The relative permeability
of oil and water was empirically formulated by Corey
(Corey et al., 1956), (Goda & Behrenbruch 2004)
and presented in Equations 3 and 4:

No

So— S,
kro = Kromax (1 —(.)S' _m:g ) @)
or wc

Sw—Swe ™
krw = Krwmax (m) (4)
A standard method in petroleum reservoir
simulation known as fluid compressibility is
integrated in the black oil model to account for
pressure-dependent changes in fluid density and
volume. Each fluid in a two-phase oil-water is
considered slightly compressible and is characterized
using pressure-dependent properties.

1 (9B,
o= B—I(W)T ()

The isothermal compressibility of a fluid phase
c; is the relative volume change with pressure at
constant temperature. Meanwhile, the formation
volume factor B; varies with pressure P.

o -3),

The porosity of a rock which is represented by
¢ describes the fraction of the rock volume
considered pore space and varies as a function of
pressure. The change in porosity due to pressure is
governed by the rock compressibility c,.

The governing equations for fluid flow in porous
media are typically formulated as a combination of
boundary and initial value problems. An initial value
problem refers to a situation where the solution of the
governing equations depends on specified conditions
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at an initial time. This often shows that the initial
distributions of pressure, saturation, or other relevant
state variables need to be known in the spatial
domain at the start of the simulation. Meanwhile, a
boundary value problem focuses on specifying the
behavior of the solution along the spatial boundaries
of the domain. The existence in porous media
includes prescribed pressures, flow rates, or no-flow
conditions at the reservoir boundaries, injection
wells, or production wells. The boundary conditions
are important for determining how the fluid interacts
with the surrounding environment and govern the
movement in the domain.

Fully Implicit Method (FIM) in reservoir
simulation is a numerical method often used in
reservoir simulation to solve the coupled systems
of nonlinear PDEs governing multiphase fluid
flow in porous media. It is called fully implicit
because all variables such as pressure, saturation,
composition, etc. are treated implicitly in time to
ensure unconditional stability for large timesteps but
the process is computationally expensive. All terms
are evaluated at the next timestep ¢+/

k (S )t+1
V.<Kpl ri\Ow ppt+l

I

_ (S = (p9S)*
- At

()

The domain is discretized into grid blocks and the
equations are integrated over each control volume.
Therefore, the discretized equations are written as
residuals:

F(b**1) =0, b=1[P,S,,S,] (8)

where, is the residual form of the governing equation
of fluid flow through porous media and is a vector of
variables of pressure and saturation. The equation is
solved through Newton-Raphson as follows:

]k5bk — _Fk (9)
b*+1 = pk + §b* (10)

Where, J is the Jacobian matrix containing
partial derivatives of all equations with respect to
all variables.
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METHODOLOGY

A conceptual model was proposed to develop
fluid flow solutions using PINN based on the
five-spot waterflooding injection pattern in a two-
dimensional (2D) plane as presented in Figure 1.
The simulation area included a single sector with
production-injection pairs positioned at opposite
corners of a square-shaped area. The reservoir fluid
consisted of a two-phase immiscible fluid in the
form of oil and water which were treated as slightly
compressible. The model assumed there was no
dissolved gas in either the oil or water phases.
Moreover, gravitational acceleration was neglected
in the 2D aerial model.

The pattern of a fluid flow around a well is radial
due to the movement from the surrounding radius
toward the wellbore. Consequently, the well blocks
were modeled separately from the reservoir domain
and used to represent the surrounding area with
homogeneous physical properties. This model was
adapted from a similar block in numerical reservoir
simulation which also had a steady-state radial flow.
A previous study developed a model in numerical
simulation from a vertical well in a reservoir with
a focus on the inflow performance relationship
(Peaceman 1983). The fluid flowed towards a radial
center at one corner of the reservoir domain. The
Darcy velocity in the radial direction at the block
interface was subsequently described as a linear
velocity along the axis.

13

Neural networks were trained to approximate the
pressure and saturation field (11) at a given time step.
The inputs are subsequently defined by 2D spatial
variables as follows:

P,S, = i(x,y,0) (11)

The spatial domain was treated as continuous to
eliminate the need for a mesh-grid method observed
in conventional reservoir simulations. Moreover,
the temporal domain was discretized in adherence
to standard reservoir simulation frameworks where
solutions were computed at predefined time steps.
This discretization reduced the dimensions and
computing time of the problem. The governing
equation for each liquid phase was formulated into
a residual function as presented in Equation 12.

t+1
R(P,S) =V- (M VPf)

Blt H (12)
t+1 t
(B -5
At

The residual value was evaluated at collocation
points (7).

Ng
1 ~ A
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Figure 1. Conceptual reservoir model for two-dimensional linear flow
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PDEs loss function of the fluid phase was
formulated as the mean square error computed
from the residuals of the governing equations.
It was systematically evaluated at a set of
predefined collocation points in the domain a.

The initial and boundary conditions were
necessary to complete PDEs fluid flow equation.
ANNSs were trained on labeled data representing the
initial conditions in order to estimate the pressure
distribution and the saturation distributions $9.

P%, 89 ~1°x,y,0) (14)

At the reservoir boundary, Dirichlet boundary
conditions were applied to each liquid phase as
presented in Equation (15). The two types of
boundary conditions applied were constant flow
rate at the wells (inner boundary) and no-flow at the
reservoir boundaries (outer boundary).

2
k> (15)

The boundary condition loss function of the
fluid phase in a linear direction presented as in
was formulated as the mean square error computed
from the residual values of the boundary conditions
equations from collocation points within the
domain boundary . Moreover, the radial well
blocks had a constant flow rate normal to the arc
of the well block which allowed the flow velocity
vector to be decomposed along the Cartesian axes.
The constant flow rate boundary conditions were
applied to the well block or inner boundary with
the loss function expressed in the production well
as presented in Equation (16) and the injection
well in Equation (17). The inner boundary loss
functioncorresponded to the fluid phase of each
well with the oil phase for production wells and
the water phase for injection wells.

Np ~
1 P HiVn,1
L = —z <— (X ,y ) + -
BCn,l Nb & an k k Knkrl

(X, Yx) € 002

Lpc,prp = Lprp,o, T LPRD,0,, (16)

Lpcivy = Lingw, + Linjw, (17)
No-flow boundary conditions were applied on all

four sides of the reservoir boundary as a loss function
of'the outer boundary, including the west , north , east
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and south . At zero flow rates, the pressure gradient
was equal to zero. The outer boundary loss function,
was the sum of the mean square errors of the four
boundary conditions as presented in (18). This was
in line with the normal flow direction towards the
reservoir boundary for each phase. The west and east
sides were in the x direction while the north and south
were in the y direction.

LBC,OB = Lw,ox + Lw,wx + Ln,oy + Ln,wy

(18)
+Leo, + Lo, + Lso, + Lo,

The steps to determine a solution using PINN
algorithm are outlined in Figure 2. First, a neural
network  #@(x,y,0) was constructed to
approximate the solution P(x,y) and S, (x,y).
The network parameters 6 = {Wf, bf] forl <
£ < L consisted of the weight matrices and bias
vectors of the neural network used in the
approximation #i. The next step was to constrain
the neural network in order to satisfy the physical
laws governed by PDEs and the boundary
conditions. The training dataset consisted of two
subsets which were the points in the interior
domain and those on the boundary. These were
generated using randomly sampled collocation
points. Furthermore, an optimization procedure
was executed to identify optimal parameters 6 by
minimizing the loss function £(x,y,8) through
the process known as training. The highly
nonlinear and non-convex nature of the loss
landscape with respect to 6 led to minimization
which was performed using gradient-based
optimization methods such as Adam, BFGS and
L-BFGS (Lu et al., 2021).

The fully implicit method requires the neural
network to simultaneously solve the coupled
distributions of pressure and saturation at the same
time. ANNs shared the same input layers but had
separate output layers for pressure and saturation
distribution, respectively. These two outputs
represented distinct problem-solving characteristics
which included one for flow problems and the other
for transport problems. Meanwhile, the solution
search for the two problems has the possibility
of interfering with each other depending on the
network topology adopted. This study presents three
distinct ANNs topologies based on hidden layer
configurations presented in Figure 3 and explained
as follows:
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Figure 2. Workflow to solve two-phase fluid flow through porous media equations using PINN

1). Single-row layers (N1): There was no
separation between layers for solving pressure and
saturation distributions because both were computed
in the same layer; 2). Dual-rows layers (N2): The
layer for pressure distribution solution was separated
from the layer for saturation solution which led to
two sets of hidden networks with the same input;
3). Branched layers (NY): A common initial layer
followed the input layer and subsequently diverged
into two dedicated branches for pressure and
saturation solutions.

The achievement of optimal training of PINN
generally requires normalizing inputs to a smaller
range (e.g., [0,1] or [-1,1]). This enhanced numerical
stability, accelerated convergence, and mitigated
risks such as vanishing or exploding gradients.
PINN combined the losses from physical data, PDEs
residuals and observational data. This was necessary
because unnormalized input variables could lead
to imbalanced residual scales to destabilize the
optimization.

Each of'the topologies includes additional layers
after the input layer and before the output layer as
shown in Figure 3(a). The layers rescaled the values
to be in line with ANNs characteristics as follows:
1). Input rescaling layer, , transformed the input
coordinates (x, y) into the range (0,1); 2). Output
rescaling layers mapped the (0,1) output range back
to the physical scales of solution distributions where
was for pressure distribution and for saturation
distribution.

(Ri)

Figure 3. Neural Network topology: (a) Basic network
configuration, (b) single row layer N1, (c) dual row layer
N2, (d) branched layer NY
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RESULT AND DISCUSSION

The three topologies mentioned were
implemented into nine neural network configurations
with each having varying numbers of hidden layers
and neurons per layer. The number of layers and
neurons differed but the total number of weights and
biases did not vary significantly. The smallest number
of weights and biases was in model N2-1 with 4,284
variables while the largest was in N2-3 with 4,366.

In N1 topology, the network chain was not
separated into the network for solving pressure and
saturation distributions. This led to the production
of two configurations in the form of models N1-1
and N1-2. Meanwhile, N2 separated the network
chain into distinct networks which led to the
production of three configurations, including
models N2-1, N2-2, and N2-3.

Table 1. Number of hidden layers and variables

No. of Hidden
No Model Layer Z var
Com Pres Sat

1 NI-1 4 - - 4365
2 NI-2 6 - - 4349
3 N2-1 - 3 3 4284
4  N2-2 - 4 4 4364
5 N2-3 - 5 5 4366
6 NY-1 1 5 5 4302
7 NY-2 1 3 3 4344
8 NY-3 2 2 2 4293
9 NYH4 3 1 1 4287

The final NY topology featured a common
layer that branched into pressure and saturation
layers. This led to the design of four neural network
configurations including NY-1, NY-2, NY-3, and
NY-4. The number of layers and neurons per layer is
presented in Table 1. The differences in the number of
layers and neurons while a relatively similar number
of variables was maintained led to different network
architectures, including wide-shallow, narrow-deep,
or intermediate structures. The performance of each
topology and its configurations was subsequently
evaluated based on convergence speed and accuracy.

Initial condition training

Initial conditions define the state of the reservoir
at time zero before any production or injection
starts in a two-phase oil-water reservoir simulation.
The settings are the critical starting point for the
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simulation to predict the behavior of the reservoir
over time. The two most fundamental initial
conditions are pressure and saturation. The fluids in
the reservoir are typically assumed to be in a state
of hydrostatic equilibrium which is uniform in a 2D
aerial model. This shows that the initial saturation is
not uniform. The water zone with a specific focus on
the area surrounding an injection well is assigned a
water saturation equal to . Meanwhile, the oil zone
is initialized with the connate water saturation as
presented in Figure 4.

Pressure Distribution at t=0

3300
2000
1750 1 3200
1500 T
3100
1250 -
> 1000 - 3000
750
- 2900
500
250 - 2800
0
. . . . . 2700
0 500 1000 1500 2000
X
Water Saturation Distribution at t=0
0.8
2000 »
1750 0.7
1500 -
0.6
1250
= 1000 | - 0.5
750 4
- 0.4
500 -
250 0.3
0_
. 0.2

T T T T
0 500 1000 1500 2000
X

Figure 4. Initial conditions for pressure and water saturation
distribution

Each NN model from the three topologies was
trained to approximate the initial conditions using
BFGS optimizer with 20 iterative optimization steps.
The loss function history of the initial conditions is
presented in Figure 5 while the final loss values are
summarized in Table 2.
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Loss Lp

Training. n

Figure 5. Initial BC Loss History

Table 2. Initial condition loss function values

Model Lpo L0 Lpo+ Lg,0
NI1-1 7.934e-11 2.325e-09 2.404¢-09
NI1-2 1.181e-13 2.738e-11 2.750e-11
N2-1 5.657e-14 1.009¢-10 1.009¢-10
N2-2 2.793e-15 2.289¢-09 2.289¢-09
N2-3 6.311e-15 4.047e-11 4.048¢-11
NY1 2.566e-15 2.771e-11 2.771e-11
NY2 2.706e-15 9.097e-11 9.098e-11
NY3 3.266e-15 3.916e-10 3.916e-10
NY4 1.580e-13 1.289¢-09 1.289¢-09

The loss curve shows that model NY-1 achieves
the fastest convergence by maintaining relatively low
loss values from the initial iterations. The information
in Table 1 showed that three models exhibited
significantly small loss values with N1-2 recording
2.750x107"" and NY-1 had 2.771x107"! primarily
due to the saturation (Sw) component. However, the
comparison of the pressure (P) losses showed that
NY-1 outperformed N1-2 with a smaller value. The
low initial BC loss value showed the effectiveness of
ANNES as an effective approximator for the solution.
The loss values in Table 2 reflected the ability of
NY to produce better approximations compared
to N1 and N2. All initial models were subsequently
trained in PINN framework to solve the pressure and
saturation distributions for the next timestep. The
training was governed by the two-phase (oil-water)
flow equations in porous media.

Solutions using N1 topology

The two ANNs in N1 topology were trained
to solve two-phase flow equations using PINN
framework. This numerical model solved the
governing equations for pressure and saturation
distributions simultaneously within a single row
computational layer. N1-1 featured a relatively
shallow and wide architecture with fewer hidden
layers but more neurons per layer. Meanwhile,
N1-2 adopted a deeper and narrower topology that
comprised more hidden layers with fewer neurons
per layer.

The training process was conducted by applying
BFGS optimizer to 70 iterations with the loss
function history presented in Figure 6. The solutions
at the 70th iteration are shown in Figure 7 with the
pressure and saturation distributions from both N1-1
and N1-2 models presented alongside the numerical
reference for comparison.

Both PINN solutions showed significantly
similar pressure and saturation distributions which
were in excellent agreement with the reference. N1-2
achieved faster convergence than N1-1 as evidenced
by the lower loss function values particularly after the
13th iteration and production of solutions that more
closely matched the numerical reference at the 70th
iteration. The pressure solution from N1-1 exhibited
minor discrepancies near the injection well area.
The continuous optimization of N1-1 could achieve
comparable convergence to N1-2 but would require
additional iterations. The pressure distribution and
water saturation from an aerial perspective of the
final solutions for N1-2 are shown in Figure 8.
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Figure 6. Loss history of N1 topology at timestep ¢+1
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the solutions. N2 architecture demanded significantly
more iterations compared to the others but produced
solutions with considerable deviations from the
reference values.

Solutions using NY topology

This study developed four ANNs models with
an NY topology to examine the effects of layer
configuration, neuron count, and branching position.
NY-1 had a deep, narrow architecture that consisted
of one common layer followed by branching and
five solution layers to produce a substantially longer
solution network than the common model. NY-2
maintained a similar structure with one common
layer and three solution layers but with a shorter,
wider configuration. NY-3 showed a balanced layer
distribution between common and solution networks.
Meanwhile, NY-4 incorporated more common layers
than solution layers. All the latter three models N'Y-
2, NY-3, and NY-4 exhibited relatively shallow and
wide architectural characteristics.

Training was conducted using BFGS optimizer
for 50 iterations with the loss function history
presented in Figure 12. The solutions obtained at the
50th iteration are shown in Figure 13 with a focus
on the pressure and saturation distributions from all
four NY models alongside the numerical reference.

Figure 13 shows that the curves of all the models
exhibit excellent agreement with the reference from
the numerical solution. The variations in the number

of layers and neurons had minimal influence on
solution quality. Moreover, the deep-narrow NY-1
architecture produced curves which was most closely
in line with the reference solution and represented
the best-performing configuration. The model also
achieved the lowest loss function values as reflected
in the loss history. At timestep #+1, the NY topology
generally showed faster convergence and higher
accuracy compared to both N1 and N2.

The training results for all models at timestep
t+1 are summarized in Figure 14. The boxplot in
Figure 14(a) presents the average computation time
per iteration while the bar chart shows the total
number of iterations. Model N1-2 in N1 topology
which produced a convergent solution required
more computation time than N1-1. The same trend
was observed in NY topology where NY-1 produced
the highest accuracy but demanded longer training
time than other comparable models. In N2 topology,
the solution did not converge while NY-1 showed a
higher average computation time per iteration than
other models. Model configurations with deeper and
narrower neural network layers (i.e., more layers
with fewer units per layer) generally required longer
training times. This was attributed to the extended
computations in both the forward and backward
propagation steps. Figure 14(b) further shows that
deep-narrow architectures such as N1-2, N2-3, and
NY-1 achieve higher accuracy compared to shallow-
wide configurations.
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Subsequent training

The training was extended to solve the fluid
flow equations at timestep #+2 using three selected
models, including N1-2, NY-1, and NY-3. The
models had previously solved the flow equations at
timestep #+1 with high accuracy, thereby providing
validated neural networks suitable for use as initial
conditions in the subsequent timestep. The use of
non-convergent or low-accuracy networks was also
avoided to minimize the error propagation across
timesteps. The neural network model obtained from

the previous training step was retrained to perform
tasks at the subsequent timestep while an identical
copy was used as the initial condition for pressure
and saturation. As shown in Figure 16, the pressure
and saturation distribution curves of N1-2 coincide
with the reference solution which shows superior
accuracy with the loss function values less than 1.0
e-10. Meanwhile, NY-1 and NY-3 showed higher loss
function values at timestep +1 compared to other
FNN models and further amplified in the subsequent
timestep.

Loss history t+2

‘:\ — Lpn1z — = Lsw,n12
-3 L 103
TTH 10 .\ — Lpnv1 —-= Lowny1 [ 10 o
2 \ — Loy == Lsw,nv3 F
g 107 1 \ 107 2
g %
‘\ =
g 1071 % r107 8
- w
W L T M | B — e . ¢ 5 s & R — o — — 0
n \ S ot o 4 e 0 o [ # s 0 e —_— I
3 1074 \“ _______ - 1072 A
10711 T T T T T T 10711
0 2 4 6 8 10
Training, n®
Figure 15. Loss history at timestep ¢+2
Pressure Distribution Comparison t+2
-—- N1-2
3050 4~~~ N1
= -—- NY-3
= —— Num
Y 3000 s
=
@
w
&
2950 -
0 250 500 750 1000 1250 1500 1750 2000
x (ft)
Water Saturation Distribution Comparison t+2
0.8+ ___ ni2
0.74 ——- N¥1
= ——- NY-3
= 067 — Num
@ 0.5
Z 0.4
0.3 -
0.2 1
0 250 500 750 1000 1250 1500 1750 2000

x (ft)

Figure 16. Solutions at timestep 7+2

DOI 0rg/10.29017/scog.v48i3.1858 | 145



Scientific Contributions Oil & Gas, Vol. 48. No. 3, October 2025: 131 - 147

CONCLUSION

In conclusion, this study presented a PINN-
based fully implicit method for solving two-
phase immiscible fluid flow equations. FNN was
effectively modeled to capture spatial and reservoir
dynamics without requiring observational data or
grid discretization. The branched-topology FNN
architecture improved stability and convergence
by minimizing interference between pressure and
saturation distributions. It was also observed that
the number of hidden layers critically influenced
both convergence speed and accuracy. The proposed
method showed strong potential for advancing
machine learning—based PDEs solvers but required
further improvements particularly in reducing
computational costs.
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GLOSSARY OF TERMS

Symbol  Definition Unit

>

Permeability mD

Relative permeability

Fluid saturation

Residual oil saturation

Connate water

saturation

Viscosity cp

Porosity

Density b
/ft?

Compressibility 1/psi

Pressure psi

Formation volume

factor

Velocity fd

Time day

Residual error

Loss function

Network parameter

Layer weight

Layer bias

=
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