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ABSTRACT - Flowing Bottomhole Pressure (FBHP) is an essential factor for oil well performance
evaluation, but conventional measurement methods can be costly and lack real-time capability. This study
presented a machine learning approach to estimate FBHP using simulated data from established vertical
flow correlations (VLP). The proposed framework included four main steps: collecting input parameters,
simulating pressure drops calculation, developing an artificial neural network (ANN) model, and designing
the FBHP calculation algorithm. The ANN was developed using key input variables, including inlet
pressure, system temperature, tubing size, inclination, segment length, gas-oil ratio (GOR), water cut, oil
American petroleum institute gravity, gas gravity, fluid rate, and VLP type. A dataset of 790,409 points from
several multiphase flow simulations was used, covering various well conditions for naturally flowing oil
wells without artificial lift. The optimal ANN architecture featured six hidden layers and was trained with
transformed, encoded, and normalized inputs, achieving a testing mean absolute error (MAE) of 7.8259 psia
and R? 0 0.9993. Segment-level predictions were then conducted iteratively to estimate FBHP for the whole
well trajectory. Compared to earlier studies, the novelty of this work resided in its large and diverse set of
well-flowing conditions, combined with comprehensive tubing geometry using segmentation. This approach
enabled the modeling of a wider range of flow scenarios and complex well trajectories.

Keywords: flowing bottomhole pressure, artificial neural network, vertical flow correlation, well
performance.
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INTRODUCTION

Flowing Bottomhole Pressure is one of the most
important parameters for production engineers
to monitor oil or gas well performance. FBHP
provides crucial information to assess whether
a well is operating normally or experiencing
anomalies. Accurate FBHP monitoring not only
supports production optimization but also advises
decision making for well intervention and oil field
development (Guo et al., 2007).

Some techniques are available to measure
FBHP, depending on technical needs and economic
feasibility. Installing permanent downhole
pressure gauge is a modern solution that enables
real-time monitoring but it is relatively expensive
and typically suitable only for high-producing
wells. As an alternative, periodic pressure
surveys can also be conducted using wireline
units equipped with Electronic Memory Recorder.
While this method is less expensive than installing
permanent gauge, it still involves significant costs
and does not provide long-term real-time data
(Schlumberger 1998).

A cost-effective alternative is to estimate
FBHP using established vertical flow performance
correlations, such as Beggs-Brill, Duns-Ros,
Orkiszewski, and others. These correlations use
surface pressure, flow rates, well geometry, and
fluid properties to calculate pressure drops and
estimate FBHP without requiring expensive
downhole equipment or surveys. However, while
this is only an estimation method, applying these
correlations also requires detailed and complex
procedures and also rely on the accuracy of
input data. Estimation errors can occur if input
parameters are inaccurate or flow conditions
change significantly (Lyons et al., 2005).

Machine learning has become an increasingly
popular tool in the oil and gas industry, supporting
a wide range of applications from operational
optimization to safety enhancement. Bangert
(2021) compiled numerous real-world use cases
in this domain, including predictive maintenance
and failure prediction for engines, pipeline leak
detection, artificial lift problem classification,
and multiphase flow rate estimation. Candra et al.
(2024) evaluated Support Vector Machine (SVM)
and k-Nearest Neighbour (KNN) algorithms for
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facies estimation from well log data, finding
that KNN produced higher accuracy than SVM.
Similarly, Hamzah et al. (2021) also evaluated
hydraulically fractured well performance using
empirical correlation and machine learning,
reporting that machine learning achieved higher
prediction accuracy than empirical correlation
for production rate and water cut, and could aid
in well candidate selection. Zainuri et al. (2023)
demonstrated that predicting petrophysical
parameters such as porosity and water saturation
with machine learning can be prone to issues like
overfitting, poor feature selection, and ranking
errors, but showed that a workflow integrating
ML with petrophysical theory can mitigate these
traps and yield accurate predictions even from
limited well data. Wardhana et al. (2021) applied
several machine learning algorithms including
ANN, KNN, Support Vector Regression (SVR),
Decision Tree, and Random Forest (RF) to predict
Total Organic Carbon (TOC) values from well log
data, finding that RF produced the most accurate
predictions for the training well while KNN
performed best on an independent test well.

In line with these studies, the application
of machine learning for estimating FBHP has
also gained traction. Several studies in Table
1 have demonstrated that these techniques can
achieve accuracy comparable to, and in some
cases exceeding, that of traditional empirical
correlations. Many regression algorithms from
conventional machine learning methods, such as
Linear Regression, RF, KNN, SVM, or Gradient
Boosting (GB), to modern algorithms like ANN
and Long Short-Term Memory (LSTM), were used
and showed positive results in estimating FBHP.

Nevertheless, these studies have often focused
on limited datasets, resulting in models that
do not fully represent general well-flowing
conditions. In addition, many of these studies
have relied on simplified well geometries, such as
vertical wells or specific trajectory types, making
them impractical for complex well trajectories.
Accordingly, this study is intended to use a
large and diverse set of well-flowing conditions,
combined with comprehensive tubing geometry
using segmentation. This approach enables the
modeling of a wider range of flow scenarios and
complex well trajectories.
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Table 1. Previous studies of FBHP estimation

No. Authors Year Methods Data Main Results Remarks
Numerically Limited to 5
simulated dataset .
. . ANN model with  types of well
. ANN with  representing . . .
Spesivtsev . . two hidden layers trajectories.
1 2018 2 hidden various well flow . .
,P., etal .. . achieved NRMSE  Relatively
layers conditions with 5 o
. . <5% limited data
types of trajectories oints
(3,500 samples) P )
GB is best for
RF, GB, liquid holdup
SVM, Lab data from calgulatwn, flow Comprehensive
ANN, . regime
. various sources . . approach, used
Kanin, Surrogate . classification, and .
2 2019 . based on previous . segmentation,
E.A., etal. Modeling, h pressure gradient . 0
. studies (2,560 data . . relatively limited
Pipe oints) calculation with data points
Segmentati p R2=10.93, p '
on accuracy = 88.1%,
and R*=0.95
ANN with
Levenberg-
Tariq, Z., Mqrquardt Published well data PSQ-ANN _ L1g11ted dat?
3 ctal 2020 training, (206 data points) achieved R?=0.98, points. Vertical
: PSO p AAPE=2.0% well only.
optimizatio
n
Nait SVR with Algerian oil well SVR-FFA .
RBF kernel . Limited data
4 AmaMs o000 optimized 932 (100 achieved oints from
& Zeraibi, pun measurement AARD=2.13%, pomnt
N by Firefly oints) R2=0.9981 specific wells.
' Algorithm p ’
Sami, Field data from . Limited data
5 NA., & 2021 RF,KNN,  Middle Eastern oil /2\15\101/\1 aChleV; d " points from
Tbrahim, ANN wells (206 data 70 CTOLDESE - gpecific field /
. method
D.S. points) wells
Blessing
? Volve field data . .
6 0.,& 2021 RF,GB (3,522 rows after RF achieved Specific field /
Agbons, 1. o 97.80% accuracy  well data
S normalization)
XGB, linear .
regression Australian coal XGB achieved
7 Rathnayak 2022 mixed seam gas Wf;ll 'data MAPE=10% for Specific field /
e, S., etal. (91 wells within 5- . .. well data
effects individual wells
19 months)
models
Olamigok .
g ©0-& ) SVRRE JOIRTEN o LSTMachieved L:irrlllttse?oi?taz
Onyeali, LSTM p MAPE <2.9% p Y
(two wells) wells).
D.C.
Genetic
Egi())rlthm Norwegian Volvo
9 Okoro, 2023 Im e;ialis ¢ field data (9,161 ICA achieved Specific field /
E.E,etal. peria’is data points after R?=0.9985-0.9989  well data
Competitiv filtering)
e Algorithm &
(ICA)
Nwanwe AN.N with  Middle Eastern ?;\Irilzgr}llszo-ls- II;:)riTlltt: grs;atia
10 > 2023 3 hidden wells (1,001 data K .
C.C.,etal. lavers oints) achieved specific field /
Y P R2=0.903 wells
Nwanwe, ANFIS Middle Eastern oil AI\tIFISf d Llr.mttecfl data
11 C.C,& 2023 white-box field data (1,001 outpertorme pormnts trom
Dure. U. 1 model data points) mechanistic and specific field /
T other ML models  wells
multivariate Numerically Comprehensive
adaptive simulated dataset FBHP equation is P o
Agwu, E. . . . . approach, limited
12 2025 regression  representing provided with .
0., etal. . . . N for vertical well
splines various well flow training R“=0.942 onl
(MARS) conditions. ¥
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METHODOLOGY

To achieve the objectives, this study was
divided into several stages as described in Figure
1. First, the range of values of relevant well
parameters affecting FBHP calculation was defined.
These parameters were then used in simulations
to calculate pressure drops in tubing segments
using established flow correlations. After that, the
simulation results were used to develop a machine
learning model through comprehensive training
and testing. Once trained, the best-performing
model was integrated into an algorithm capable of
estimating FBHP under various well conditions.
The estimated FBHP values can then be utilized for
effective well performance monitoring.

Data preparation for simulation

This initial phase focused on identifying all input
variables that affect FBHP based on VLP. Afterwards,
the range of values for each variable was predefined
to ensure full coverage of the simulation scenarios.
The key input variables considered in this study
were inlet pressure, average temperature, tubing
size, inclination, tubing segment length, gas—oil
ratio (GOR), water cut (WCUT), oil American
petroleum institute gravity, gas gravity, and VLP. For
each variable, an appropriate range of hypothetical
values was defined to represent different operating
conditions and production fluid properties. The
combinations of these variables determined the total
number of simulation cases, and the parameter sets

are summarized in Table 2.

Simulation of pressure drop calculation

Building on the predefined parameter sets, the
pressure drops across the tubing were modelled
using commercial multiphase flow simulation
software. A number of simulation runs were carried
out to calculate the pressure drops for all parameter
combinations. Each simulation produced two main
outputs: the liquid flow rate and the pressure drop.
This liquid flow rate was then used as an additional
variable, combined with the parameter sets defined
earlier. Altogether, the simulations produced
790,409 data points.

Machine learning modeling

Following the numerical simulation stage, the
next step focused on developing machine learning
models to predict pressure drops. As shown in Figure
2, this process began with careful data preprocessing
where several tasks were conducted to ensure the
dataset was suitable for the next modeling step.
Missing data were handled appropriately, numerical
features were normalized, and categorical variables
were encoded. For example, the Vertical Flow
Correlation, which is categorical, was transformed
using One-Hot Encoding and represented as a binary
vector. As part of an experimental tuning process,
Label Encoding was also tried for this feature to
explore an alternative approach that might improve

Research Procedure

Collecting Input Data for
Simulation

=
v v

Machine Learning Modelling

Conducting Simulation of AP
Calculation using Correlations
Y ¥

Deliverability

~

Input parameters:

Tubing size, Tubing inclination, Tubing segment,
Gas oil ratio, Water cut Oil AP gravity. Oil flow
rate, Flow correlation. Inlet Pressure, and
Temperature

_.[

Dataset:
Input Parameters vs. AP

Maodel
Machine Learning

'

¥

I' Developing FBHP Caleulation 1
Algorithm

-

FBHP Caicuiation Aigorithm |

Figure 1. Research procedures

40 | DOI org/10.29017/scog.v48i3.1851



Table 2. Data input for simulation (hypothetical)
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Variable Alias Unit Value Data
Format
Inlet pressure inpress psia 5000, 2000, 200 numeric
System temperature temp °C 30,75, 150 numeric
Tubing size diam in 1,3.0,4.5 numeric
Tubing inclination angle degrees 0°,45°,90° numeric
Tubing segment length  length ft 100, 500, 1000 numeric
Gas-oil ratio gor scf/stb 100, 1500, 5000 numeric
Water cut wcut % 0,50, 100 numeric
Oil API gravity api degrees 20, 35,45 numeric
Gas gravity gassg - 0.6,0.8, 1.0 numeric
. Duns-Ros (dr),
Vertical flow vlp — Orkiszewski (or), Beggs- text

correlation

Brill (bb)

model performance.

For the numerical features, in addition to VLP
and the pressure drop target, normalization was
performed using a Standard Scaler, which adjusted
values to have a zero mean and a unit standard
deviation. This step helped improve performance
and stability during model training. A logarithmic
transformation was also applied to the Flowrate
feature as an experiment to help improve model
performance and keep it consistent with other
numerical variables. After preprocessing, the dataset
was randomly divided into training, validation, and
testing sets with proportions of 70%, 15%, and 15%
(553,286, 118,562, and 118,561 data points). This
split ensured a fair model evaluation and helped
prevent data leakage between subsets.

After the preprocessing phase, the training of
the machine learning model was carried out, during
which the model parameters were optimized using
the training dataset. Following this training, the
model was validated using a validation dataset
to assess its generalization capability. Once these
steps were complete, the model was then evaluated
by comparing the estimated values with those
calculated from the flow correlations using the
testing dataset.

Standard regression performance metrics were
used to assess model accuracy. The evaluation
focused on comparing the correlation-derived
pressure drop versus the predicted pressure drop,
using metrics such as MAE, MAPE and R?. Other
metrics, including MSE and RMSE, were not used as
the primary basis for evaluation because their values

could vary depending on the pressure drop range.
If the error remained high, hyperparameter tuning
and experiments were carried out and the training
was repeated until the best-performing model was
achieved.

ANN model experiments

A series of experiments were carried out to
examine how different configurations affected the
model performance. These experiments covered
not only the parameter tuning, but also model
architecture and data preprocessing techniques.

The architecture experiments tested several layer
configurations to find the balance between model
complexity and generalization. Four different setups
were evaluated based on the basic architecture as
shown in Figure 3. The first configuration used an
input layer connected to layers with 64, 32, and 16
nodes before the output. The second configuration
expanded the structure by using 128, 64, 32, and
16 nodes. The third tested configuration included
256, 128, 64, 32, and 16 nodes. Finally, the last
configuration used a model of 512, 256, 128, 64,
32, and 16 nodes.

In addition to architecture, various activation
functions such as ReLU, ELU, LeakyReLU, and
SoftPlus were also tested. Regularization methods
including BatchNorm1d and Dropout were also
applied to improve training stability and help
prevent overfitting. Batch sizes ranging from 64 to
8,192 were also evaluated to understand their effect
on training convergence. The number of training
epochs also varied between 50 and 2,000 depending
on model complexity and the stability of the results.

DOI org/10.29017/scog.v48i3.1851 | 41



Scientific Contributions Oil & Gas, Vol. 48. No. 3, October 2025: 37 - 51

Validation
Dataset
K
¥
Data Data Training Model | Model Best Selected
Samplo Data -1 Preprocessing ] Splitting Dataset Training “|  Validation Models K Models
A
Parameters Tuning
& Experiments
Y
Testing
Dataset

Figure 2. Machine learning modeling procedure
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Step 1 (Data Preparation)
General Input:

gor, weut, api, flowrate, vip
FTHP, Number of Segment

Step 3 (Calculation at Segment 2)

Input:

Avg. Temp of tubing 2

Step 2 (Calculation at Segment 1)
Input:

Avg. Temp of tubing 1
Diameter of tubing 1
Inclination of tubing 1
Length of segment 1
Pressure Output (P, =FTHP)

Calculation Result:

+ Diameter of tubing 2 P2
* Inclination of tubing 2

* Length of segment 2

*  Pressure Output (P,)

Calculation Result:

* Pressuredrop AP,

* Pressurelnput (P; =P, + AP,)

Step 4 (Calculation at Segment 3)
Input:

* Avg. Temp of tubing 3

* Diameter of tubing 3

* Inclination of tubing 3

* Length of segment 3

* Pressure Output (Py)
Calculation Result:

< Pressurediop AP,

* Pressurelnput (P, =P3+ AP;)

Figure 4.

Pressure drop AP,
Pressure Input (P, = FTHP + AP,)

Step 5 (Calculation at Segment 4)
Input:

P, Ps = FBHP

Avg. Temp of tubing 4
Diameter of tubing 4
Inclination of tubing 4
Length of segment 4
Pressure Output (P,)

Calculation Result:

Pressure drop AP,
Pressure Input (P; =P, + AP,)

Finalresult FBHP = P,

FBHP calculation logic
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Data Preparation:
gor, wcut, api, flowrate, vip,
FTHP, Number of Segment (N),
Error Tolerance (E)

Segmen-S Preparation:

— temp, diam, angle, length,

Output Pressure (outpress®“®)

W

Y

Guess inpres k_

Calculate deltapressure (AP)
using Selected ANN Model

v

Calculate outpress™*"* and Error

outpress™" = inpres + AP
Error = |outpress™“"-outpress™ |

Error < E
No
Yes

S=S+1

FBHP = inpress at last Segment

Figure 5. FBHP calculation algorithm
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From the data view, the experiments also
compared model performance using the full dataset
versus the models trained limited to flow rates below
10,000 STB/d to assess whether removing extreme
values could help reduce bias. The effect of using raw
Flowrate values versus logarithmic Flowrate values
was also tested to see if transforming skewed data
would give more accurate results. Finally, the VLP
feature was processed using both Label Encoding
and One-Hot Encoding to compare their impact on
the model’s predictive capability.

FBHP calculation algorithm

The best ANN model obtained from the modeling
step was then used to estimate FBHP for any new
datasets. This estimation process was relatively
straightforward and fast, but had to be carried out
step by step for each tubing segment. As described
in Figure 4, the process began by preparing the
required input data, starting with the uppermost
tubing segment closest to the wellhead. The required
input included temp, gor, wcut, American petroleum
institute , flowrate, vlp, number of segments, diam,
angle, length, and output pressure, with the output
pressure for the first segment set equal to the Flowing
Tubing Head Pressure (FTHP). Once the input data
were prepared, the pressure drop of each segment
was calculated using the selected ANN model. The
FBHP was then determined by summing the pressure
drops across all the tubing segments. It should be
noted, however, that because the known pressure
parameter of each segment corresponds to its output,

an iterative looping process is required to ensure
that the calculated output pressure closely matches
the known pressure. This looping can be performed
using the Newton—Raphson method. Detailed FBHP
calculation procedure for the whole well trajectory
is shown in Figure 5.

RESULT & DISCUSSION

Table 3 presents the statistical summary of
the numerical simulation results used for model
development. The dataset contains huge data
points, with flowrates ranging widely from as low
as 0.084 STB/d to a maximum of 19,999.1 STB/d.
The resulting delta pressure values ranged from
0.016 psia to 4,952.4 psia, with an average of about
485.34 psia. Table 4 presents random samples of this
simulation results. After the data preprocessing, those
datasets were transformed into different scales and
formats as shown in Table 5.

After extensive experiments of different model
structures and parameters, the best ANN architecture
obtained was a model with six hidden layers arranged
with 512, 256, 128, 64, 32, and 16 neurons before
the single output layer. Each layer was followed
by a ReLU activation function, and the network
output used a SoftPlus activation to ensure positive
outputs and smoother curves than standard ReLU.
The model was trained using the L1 Loss function
(mean absolute error) with the AdamW optimizer, a
learning rate 0f 0.001, and a weight decay of 0.0001

Table 3. Numerical simulation result statistics

2 £ =

o = - =] P A
count 790k 790k 790k 790k 790k 790k 790k 790k 790k 790k 790k
mean 1900.9 84.13 4053.6  33.03 0.8 4691 2294.9 239 303.8 46.43 485.34
std 1930.6 49.17  4720.7 10.24 0.16 40.28 2076.6 1.44 1999 36.46 954.98
min 200 30 0.084 20 0.6 0 100 1 100 0 0.016
25% 200 30 515.53 20 0.6 0 100 1 100 0 49.11
50% 2000 75 2097.87 35 0.8 50 1500 3 500 45 136.8
75% 2000 150 5957.7 45 1 100 5000 3 500 90 281.8
max 5000 150 19999.1 45 1 100 5000 4.5 500 90 49524
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Table 4. Numerical simulation result samples

46

% = g ] £ % = ?E 5 2
£E £ § & % & £ E fF EE £ i
200 75 35 08 50 100 45 100 45 8.63 or 73.0
200 75 45 1.0 50 100 45 500 45 6.92 dr 1124
5000 150 35 1.0 0 5000 1.0 500 45 7.66 dr  4067.5
5000 150 35 08 100 100 1.0 500 90 857 bb 35365
200 30 20 0.6 50 100 45 500 90 7.52 bb 24.0
2000 150 35 1.0 100 1500 1.0 100 90  9.05 dr 19203
5000 150 35 1.0 50 100 1.0 100 0 773 or 199.8
200 150 35 1.0 0 1500 1.0 100 0 0.81 or 15.0
200 150 45 0.6 100 5000 3.0 100 90 9.51 dr 151.0
200 150 45 0.6 100 100 4.5 100 0 8.83 dr 109.7
Table 5. Transformed simulation result samples
=] — o
= % > = = P P = % 2R R X
-0.881 -0.185 0.1919 0.0004 0.0766  -1.057 1.4592 -1.019 -0.039  0.7371 0 0 1
-0.881 -0.185 1.168 1.2253 0.0766  -1.057 1.4592 0.9812 -0.039  -0.200 0 1 0
1.605 1.339 0.191 1.2253 -1.164  1.3027 -0.970 0.9812 -0.039  0.2052 0 1 0
1.605 1.339 0.191 0.0004 1.3179  -1.057 -0.970 0.9812 1.1948  0.7052 1 0 0
-0.881 -1.100 -1.272 -1.224 0.0766  -1.057 1.4592 0.9812 1.1948  0.1302 1 0 0
0.051 1.339 0.191 1.2253 1.3179  -0.382 -0.970 -1.019 1.1948  0.9701 0 1 0
1.605 1.339 0.191 1.2253 0.0766  -1.057 -0.970 -1.019 -1.273  0.2444 0 0 1
-0.881 1.339 0.191 1.2253 -1.164  -0.382 -0.970 -1.019 -1.273  -3.556 0 0 1
-0.881 1.339 1.168 -1.224 1.3179  1.3027 0.4179 -1.019 1.1948  1.2243 0 1 0
-0.881 1.3393 1.1681 -1.224 1.3179  -1.057 1.4592 -1.019 -1.273  0.8494 0 1 0
000
e T rFMINE
e\ Bl T H I
100
(1]
=T
=
10
"t!."'..—la:n_‘_ =
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Figure 6. Mean absolute error trend on training & validation
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Figure 7. Pressure drop prediction (simulation vs model) on testing dataset
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Figure 8. Model feature importance
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Well Trajectory
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—&— Simulation at
FTHP=50psia

—a&— Simulation at
FTHP=200psia

Model at
FTHP=200psia

200 400 600 800
Pressure (psia)

Figure 9. FBHP result comparison

for regularization. Training was conducted for 300
maximum epochs with a batch size of 8,192. The best
results were achieved using One-Hot Encoding for
the VLP feature and the logarithmic transformation
of the Flowrate feature, which reduced the data
skewness.

As shown in Figure 6, the training & validation
MAE were initially very high (446.1 and 387.8 psia),
indicating that the model had not yet recognized data
patterns. Over time, the model gradually improved its
predictions, achieving its best performance at epoch
296 with training and validation MAE of 8.37 and
7.69 psia. This significant reduction demonstrated
that the model successfully generalized the data and
made accurate pressure predictions relative to the
scale of the pressure drops data.

This best model was then tested on the testing
dataset and the comparison plot between simulated
pressure drops versus predicted pressure drops of this
testing dataset is shown in Figure 7. The plot shows
an R? value of 0.9993 and testing MAE of 7.8259
psia. This demonstrates that the model performs
excellent on predicting the pressure drops of all the
variations of data.
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In addition to that performance metrics
evaluation, the influence of each input variable
on the model’s performance was also ranked. This
feature importance analysis was carried out using
the permutation of the feature importance method
from the scikit-learn library by randomly shuffling
the values of each variable in turn, then measuring
the decrease in the model’s accuracy caused by this
change. Figure 8 concludes that the variables with
the greatest impact on the model were log flowrate,
tubing diameter, water cut, gas-oil ratio, segment
length, and inlet pressure. Other variables like
tubing inclination, temperature, American petroleum
institute gravity, type of VLP, and gas specific
gravity, although not as dominant, still influenced the
model, enabling it to achieve high accuracy.

Figure 9 compares the FBHP results from the
developed model with those from the numerical
simulation. The analysis was conducted at a
temperature of 75 °C, flow rate of 500 STB/day,
American petroleum institute gravity of 45, gas
specific gravity of 0.8, water cut of 50%, gas—oil ratio
0f'3,000 SCF/STB, and tubing diameter of 3.0 inches,
using the Beggs-Brill correlation, with the detailed
well trajectory also shown in the chart. At FTHP
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GLOSSARY OF TERMS

Symbol  Definition Unit

ANN Artificial Neural Network -

API American Petroleum Institute ~ °API
(in API Gravity)

DIAM Tubing Diameter in

ELU Exponential Linear Unit -

(activation function)

FBHP Flowing Bottomhole Pressure  psia
FTHP Flowing Tubing Head Pressure psia
GOR Gas—O0il Ratio SCF/STB
KNN k-Nearest Neighbour (machine -
learning algorithm)
LSTM Long Short-Term Memory -
(type of recurrent neural
network)
MAE Mean Absolute Error psia
MAPE Mean Absolute Percentage %
Error
NRMSE Normalized Root Mean Square fraction

Error
PSO-ANN Particle Swarm Optimization - -
Artificial Neural Network

R2 Coefficient of Determination

RF Random Forest (machine -

learning algorithm)

ReLU Rectified Linear Unit -
SCF Standard Cubic Feet -
STB Stock Tank Barrel -

SVM Support Vector Machine -

SVR Support Vector Regression -
VLP Vertical Lift Performance -
WCUT Water Cut %

values of 50, 200, and 500 psia, the developed model
predicted FBHP values of 129.8, 293.0, and 640.2
psia, while the numerical simulation produced 127.8,
302.3, and 640.6 psia. The corresponding absolute

percentage errors were 1.54%, 3.07%, and 0.06%,
respectively. These results demonstrated that the
model closely reproduced the simulation outcomes,
with acceptable deviations. Moreover, from the
pressure trends along the wellbore from wellhead
to bottomhole, the pressure profiles generated by
both methods nearly coincided, indicating a strong
consistency between the model and the simulation.

CONCLUSION

The results of this study indicated that the
developed machine learning model could estimate
pressure drops and predict FBHP with a high degree
of accuracy across the simulated well conditions.
The model achieved very small errors and an R?
value for testing dataset 0f 0.9993, suggesting strong
capability in capturing the relationships between
input variables and FBHP. However, it should be
emphasized that these results were obtained primarily
from numerically generated datasets, which, while
extensive and diverse, may not capture the full
variability of real field data. Therefore, although the
model showed strong potential for application in well
performance monitoring, further testing with field-
scale datasets and practical deployment scenarios is
necessary to confirm its reliability and scalability in
real-world operations. To extend this study further,
future research could expand the scope of pressure
drop calculations to include gas wells, which would
broaden the production scenarios. Deployment
could also be scaled beyond individual wells to
entire production networks, enabling comprehensive
system-wide not only well’s FBHP but also pressure
profile in production networks. Additionally,
integrating more vertical flow correlations and more
machine learning algorithms could also improve
prediction accuracy by making better representation
of various conditions.
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