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ABSTRACT - Flowing Bottomhole Pressure (FBHP) is an essential factor for oil well performance 
evaluation, but conventional measurement methods can be costly and lack real-time capability. This study 
presented a machine learning approach to estimate FBHP using simulated data from established vertical 
flow correlations (VLP). The proposed framework included four main steps: collecting input parameters, 
simulating pressure drops calculation, developing an artificial neural network (ANN) model, and designing 
the FBHP calculation algorithm. The ANN was developed using key input variables, including inlet 
pressure, system temperature, tubing size, inclination, segment length, gas-oil ratio (GOR), water cut, oil 
American petroleum institute  gravity, gas gravity, fluid rate, and VLP type. A dataset of 790,409 points from 
several multiphase flow simulations was used, covering various well conditions for naturally flowing oil 
wells without artificial lift. The optimal ANN architecture featured six hidden layers and was trained with 
transformed, encoded, and normalized inputs, achieving a testing mean absolute error (MAE) of 7.8259 psia 
and R² of 0.9993. Segment-level predictions were then conducted iteratively to estimate FBHP for the whole 
well trajectory. Compared to earlier studies, the novelty of this work resided in its large and diverse set of 
well-flowing conditions, combined with comprehensive tubing geometry using segmentation. This approach 
enabled the modeling of a wider range of flow scenarios and complex well trajectories.
Keywords: flowing bottomhole pressure, artificial neural network, vertical flow correlation, well 
performance.
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INTRODUCTION
Flowing Bottomhole Pressure is one of the most 

important parameters for production engineers 
to monitor oil or gas well performance. FBHP 
provides crucial information to assess whether 
a well is operating normally or experiencing 
anomalies. Accurate FBHP monitoring not only 
supports production optimization but also advises 
decision making for well intervention and oil field 
development (Guo et al., 2007).

Some techniques are available to measure 
FBHP, depending on technical needs and economic 
feasibility. Installing permanent downhole 
pressure gauge is a modern solution that enables 
real-time monitoring but it is relatively expensive 
and typically suitable only for high-producing 
wells. As an alternative, periodic pressure 
surveys can also be conducted using wireline 
units equipped with Electronic Memory Recorder. 
While this method is less expensive than installing 
permanent gauge, it still involves significant costs 
and does not provide long-term real-time data 
(Schlumberger 1998).

A cost-effective alternative is to estimate 
FBHP using established vertical flow performance 
correlations, such as Beggs-Brill, Duns-Ros, 
Orkiszewski, and others. These correlations use 
surface pressure, flow rates, well geometry, and 
fluid properties to calculate pressure drops and 
estimate FBHP without requiring expensive 
downhole equipment or surveys. However, while 
this is only an estimation method, applying these 
correlations also requires detailed and complex 
procedures and also rely on the accuracy of 
input data. Estimation errors can occur if input 
parameters are inaccurate or flow conditions 
change significantly (Lyons et al., 2005).

Machine learning has become an increasingly 
popular tool in the oil and gas industry, supporting 
a wide range of applications from operational 
optimization to safety enhancement. Bangert 
(2021) compiled numerous real-world use cases 
in this domain, including predictive maintenance 
and failure prediction for engines, pipeline leak 
detection, artificial lift problem classification, 
and multiphase flow rate estimation. Candra et al. 
(2024) evaluated Support Vector Machine (SVM) 
and k-Nearest Neighbour (KNN) algorithms for 

facies estimation from well log data, finding 
that KNN produced higher accuracy than SVM. 
Similarly, Hamzah et al. (2021) also evaluated 
hydraulically fractured well performance using 
empirical correlation and machine learning, 
reporting that machine learning achieved higher 
prediction accuracy than empirical correlation 
for production rate and water cut, and could aid 
in well candidate selection. Zainuri et al. (2023) 
demonstrated that predicting petrophysical 
parameters such as porosity and water saturation 
with machine learning can be prone to issues like 
overfitting, poor feature selection, and ranking 
errors, but showed that a workflow integrating 
ML with petrophysical theory can mitigate these 
traps and yield accurate predictions even from 
limited well data. Wardhana et al. (2021) applied 
several machine learning algorithms including 
ANN, KNN, Support Vector Regression (SVR), 
Decision Tree, and Random Forest (RF) to predict 
Total Organic Carbon (TOC) values from well log 
data, finding that RF produced the most accurate 
predictions for the training well while KNN 
performed best on an independent test well.

In line with these studies, the application 
of machine learning for estimating FBHP has 
also gained traction. Several studies in Table 
1 have demonstrated that these techniques can 
achieve accuracy comparable to, and in some 
cases exceeding, that of traditional empirical 
correlations. Many regression algorithms from 
conventional machine learning methods, such as 
Linear Regression, RF, KNN, SVM, or Gradient 
Boosting (GB), to modern algorithms like ANN 
and Long Short-Term Memory (LSTM), were used 
and showed positive results in estimating FBHP. 

Nevertheless, these studies have often focused 
on limited datasets, resulting in models that 
do not fully represent general well-flowing 
conditions. In addition, many of these studies 
have relied on simplified well geometries, such as 
vertical wells or specific trajectory types, making 
them impractical for complex well trajectories. 
Accordingly, this study is intended to use a 
large and diverse set of well-flowing conditions, 
combined with comprehensive tubing geometry 
using segmentation. This approach enables the 
modeling of a wider range of flow scenarios and 
complex well trajectories.
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Table 1. Previous studies of FBHP estimation

 No. Authors Year Methods Data Main Results Remarks  

 1 Spesivtsev
, P., et al. 2018 

ANN with 
2 hidden 
layers 

Numerically 
simulated dataset 
representing 
various well flow 
conditions with 5 
types of trajectories 
(3,500 samples)

ANN model with 
two hidden layers 
achieved NRMSE 
<5%  

Limited to 5 
types of well 
trajectories. 
Relatively 
limited data 
points.    

 

 2 Kanin, 
E.A., et al. 2019 

RF, GB, 
SVM, 
ANN, 
Surrogate 
Modelling, 
Pipe 
Segmentati
on  

Lab data from 
various sources 
based on previous 
studies (2,560 data 
points) 

GB is best for 
liquid holdup 
calculation, flow 
regime 
classification, and 
pressure gradient 
calculation with 
R² = 0.93, 
accuracy = 88.1%, 
and R2 = 0.95

Comprehensive 
approach, used 
segmentation, 
relatively limited 
data points. 

 

 3 Tariq, Z., 
et al. 2020 

ANN with 
Levenberg-
Marquardt 
training, 
PSO 
optimizatio
n

Published well data 
(206 data points) 

PSO-ANN 
achieved R²=0.98, 
AAPE=2.0% 

Limited data 
points. Vertical 
well only. 

 

 4 

Nait 
Amar, M., 
& Zeraibi, 
N. 

2020 

SVR with 
RBF kernel 
optimized 
by Firefly 
Algorithm 

Algerian oil well 
data (100 
measurement 
points) 

SVR-FFA 
achieved 
AARD=2.13%, 
R²=0.9981 

Limited data 
points from 
specific wells. 

 

 5 

Sami, 
N.A., & 
Ibrahim, 
D.S. 

2021 RF, KNN, 
ANN 

Field data from 
Middle Eastern oil 
wells (206 data 
points)

ANN achieved 
2.5% error, best 
method 

Limited data 
points from 
specific field / 
wells

 

 6 

Blessing, 
O., & 
Agbons, I. 
S. 

2021 RF, GB 
Volve field data 
(3,522 rows after 
normalization) 

RF achieved 
97.80% accuracy 

Specific field / 
well data  

 7 Rathnayak
e, S., et al. 2022 

XGB, linear 
regression, 
mixed 
effects 
models 

Australian coal 
seam gas well data 
(91 wells within 5-
19 months) 

XGB achieved 
MAPE=10% for 
individual wells 

Specific field / 
well data  

 8 

Olamigok
e, O., & 
Onyeali, 
D. C. 

2022 SVR, RF, 
LSTM 

Volve field 
production data 
(two wells) 

LSTM achieved 
MAPE <2.9% 

Limited data 
points (only 2 
wells). 

 

 9 Okoro, 
E.E., et al. 2023 

Genetic 
Algorithm 
(GA), 
Imperialist 
Competitiv
e Algorithm 
(ICA) 

Norwegian Volvo 
field data (9,161 
data points after 
filtering) 

ICA achieved 
R²=0.9985-0.9989 

Specific field / 
well data  

 10 Nwanwe, 
C.C., et al. 2023 

ANN with 
3 hidden 
layers 

Middle Eastern 
wells (1,001 data 
points) 

ANN with 20-15-
15 neurons 
achieved 
R2=0.903 

Limited data 
points from 
specific field / 
wells

 

 11 
Nwanwe, 
C. C., & 
Duru, U. I. 

2023 
ANFIS 
white-box 
model 

Middle Eastern oil 
field data (1,001 
data points) 

ANFIS 
outperformed 
mechanistic and 
other ML models 

Limited data 
points from 
specific field / 
wells 

 

 12 Agwu, E. 
O., et al. 2025 

multivariate 
adaptive 
regression 
splines 
(MARS) 

Numerically 
simulated dataset 
representing 
various well flow 
conditions. 

FBHP equation is 
provided with 
training R2=0.942 

Comprehensive 
approach, limited 
for vertical well 
only. 

 

 

Modeling,
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METHODOLOGY
To achieve the objectives, this study was 

divided into several stages as described in Figure 
1. First, the range of values of relevant well 
parameters affecting FBHP calculation was defined. 
These parameters were then used in simulations 
to calculate pressure drops in tubing segments 
using established flow correlations. After that, the 
simulation results were used to develop a machine 
learning model through comprehensive training 
and testing. Once trained, the best-performing 
model was integrated into an algorithm capable of 
estimating FBHP under various well conditions. 
The estimated FBHP values can then be utilized for 
effective well performance monitoring. 

Data preparation for simulation
This initial phase focused on identifying all input 

variables that affect FBHP based on VLP. Afterwards, 
the range of values for each variable was predefined 
to ensure full coverage of the simulation scenarios. 
The key input variables considered in this study 
were inlet pressure, average temperature, tubing 
size, inclination, tubing segment length, gas–oil 
ratio (GOR), water cut (WCUT), oil American 
petroleum institute  gravity, gas gravity, and VLP. For 
each variable, an appropriate range of hypothetical 
values was defined  to represent different operating 
conditions and production fluid properties. The 
combinations of these variables determined the total 
number of simulation cases, and the parameter sets 

are summarized in Table 2.

Simulation of pressure drop calculation
Building on the predefined parameter sets, the 

pressure drops across the tubing were modelled 
using commercial multiphase flow simulation 
software. A number of simulation runs were carried 
out to calculate the pressure drops for all parameter 
combinations. Each simulation produced two main 
outputs: the liquid flow rate and the pressure drop. 
This liquid flow rate was then used as an additional 
variable, combined with the parameter sets defined 
earlier. Altogether, the simulations produced 
790,409 data points.

Machine learning modeling
Following the numerical simulation stage, the 

next step focused on developing machine learning 
models to predict pressure drops. As shown in Figure 
2, this process began with careful data preprocessing 
where several tasks were conducted to ensure the 
dataset was suitable for the next modeling step. 
Missing data were handled appropriately, numerical 
features were normalized, and categorical variables 
were encoded. For example, the Vertical Flow 
Correlation, which is categorical, was transformed 
using One-Hot Encoding and represented as a binary 
vector. As part of an experimental tuning process, 
Label Encoding was also tried for this feature to 
explore an alternative approach that might improve 

Figure 1. Research procedures
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Table 2. Data input for simulation (hypothetical)

 Variable Alias Unit Value Data 
Format  

 Inlet pressure inpress psia 5000, 2000, 200 numeric  
 System temperature temp °C 30, 75, 150 numeric  
 Tubing size diam in 1, 3.0, 4.5 numeric  
 Tubing inclination angle degrees 0°, 45°, 90° numeric  
 Tubing segment length length ft 100, 500, 1000 numeric  
 Gas-oil ratio  gor scf/stb 100, 1500, 5000 numeric  
 Water cut  wcut % 0, 50, 100 numeric  
 Oil API gravity api degrees 20, 35, 45 numeric  
 Gas gravity gassg – 0.6, 0.8, 1.0 numeric  

 
Vertical flow 
correlation 

vlp –
Duns-Ros (dr), 

Orkiszewski (or), Beggs-
Brill (bb)

text  

 

model performance.
For the numerical features, in addition to VLP 

and the pressure drop target, normalization was 
performed using a Standard Scaler, which adjusted 
values to have a zero mean and a unit standard 
deviation. This step helped improve performance 
and stability during model training. A logarithmic 
transformation was also applied to the Flowrate 
feature as an experiment to help improve model 
performance and keep it consistent with other 
numerical variables. After preprocessing, the dataset 
was randomly divided into training, validation, and 
testing sets with proportions of 70%, 15%, and 15% 
(553,286, 118,562, and 118,561 data points). This 
split ensured a fair model evaluation and helped 
prevent data leakage between subsets.

After the preprocessing phase, the training of 
the machine learning model was carried out, during 
which the model parameters were optimized using 
the training dataset. Following this training, the 
model was validated using a validation dataset 
to assess its generalization capability. Once these 
steps were complete, the model was then evaluated 
by comparing the estimated values with those 
calculated from the flow correlations using the 
testing dataset. 

Standard regression performance metrics were 
used to assess model accuracy. The evaluation 
focused on comparing the correlation-derived 
pressure drop versus the predicted pressure drop, 
using metrics such as MAE, MAPE and R². Other 
metrics, including MSE and RMSE, were not used as 
the primary basis for evaluation because their values 

could vary depending on the pressure drop range. 
If the error remained high, hyperparameter tuning 
and experiments were carried out and the training 
was repeated until the best-performing model was 
achieved.

ANN model experiments
A series of experiments were carried out to 

examine how different configurations affected the 
model performance. These experiments covered 
not only the parameter tuning, but also model 
architecture and data preprocessing techniques. 

The architecture experiments tested several layer 
configurations to find the balance between model 
complexity and generalization. Four different setups 
were evaluated based on the basic architecture as 
shown in Figure 3. The first configuration used an 
input layer connected to layers with 64, 32, and 16 
nodes before the output. The second configuration 
expanded the structure by using 128, 64, 32, and 
16 nodes. The third tested configuration included 
256, 128, 64, 32, and 16 nodes. Finally, the last 
configuration used a model of 512, 256, 128, 64, 
32, and 16 nodes.

In addition to architecture, various activation 
functions such as ReLU, ELU, LeakyReLU, and 
SoftPlus were also tested. Regularization methods 
including BatchNorm1d and Dropout were also 
applied to improve training stability and help 
prevent overfitting. Batch sizes ranging from 64 to 
8,192 were also evaluated to understand their effect 
on training convergence. The number of training 
epochs also varied between 50 and 2,000 depending 
on model complexity and the stability of the results.  
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Figure 2. Machine learning modeling procedure

 

Figure 3. ANN model architecture
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Figure 4. FBHP calculation logic
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Figure 5. FBHP calculation algorithm
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From the data view, the experiments also 
compared model performance using the full dataset 
versus the models trained limited to flow rates below 
10,000 STB/d to assess whether removing extreme 
values could help reduce bias. The effect of using raw 
Flowrate values versus logarithmic Flowrate values 
was also tested to see if transforming skewed data 
would give more accurate results. Finally, the VLP 
feature was processed using both Label Encoding 
and One-Hot Encoding to compare their impact on 
the model’s predictive capability.

FBHP calculation algorithm 
The best ANN model obtained from the modeling 

step was then used to estimate FBHP for any new 
datasets. This estimation process was relatively 
straightforward and fast, but had to be carried out 
step by step for each tubing segment. As described 
in Figure 4, the process began by preparing the 
required input data, starting with the uppermost 
tubing segment closest to the wellhead. The required 
input included temp, gor, wcut, American petroleum 
institute , flowrate, vlp, number of segments, diam, 
angle, length, and output pressure, with the output 
pressure for the first segment set equal to the Flowing 
Tubing Head Pressure (FTHP). Once the input data 
were prepared, the pressure drop of each segment 
was calculated using the selected ANN model. The 
FBHP was then determined by summing the pressure 
drops across all the tubing segments. It should be 
noted, however, that because the known pressure 
parameter of each segment corresponds to its output, 

an iterative looping process is required to ensure 
that the calculated output pressure closely matches 
the known pressure. This looping can be performed 
using the Newton–Raphson method. Detailed FBHP 
calculation procedure for the whole well trajectory 
is shown in Figure 5.  

RESULT & DISCUSSION
Table 3 presents the statistical summary of 

the numerical simulation results used for model 
development. The dataset contains huge data 
points, with flowrates ranging widely from as low 
as 0.084 STB/d to a maximum of 19,999.1 STB/d. 
The resulting delta pressure values ranged from 
0.016 psia to 4,952.4 psia, with an average of about 
485.34 psia. Table 4 presents random samples of this 
simulation results. After the data preprocessing, those 
datasets were transformed into different scales and 
formats as shown in Table 5. 

After extensive experiments of different model 
structures and parameters, the best ANN architecture 
obtained was a model with six hidden layers arranged 
with 512, 256, 128, 64, 32, and 16 neurons before 
the single output layer. Each layer was followed 
by a ReLU activation function, and the network 
output used a SoftPlus activation to ensure positive 
outputs and smoother curves than standard ReLU. 
The model was trained using the L1 Loss function 
(mean absolute error) with the AdamW optimizer, a 
learning rate of 0.001, and a weight decay of 0.0001 

Table 3. Numerical simulation result statistics
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 count 790k 790k 790k 790k 790k 790k 790k 790k 790k 790k 790k

 mean 1900.9 84.13 4053.6 33.03 0.8 46.91 2294.9 2.39 303.8 46.43 485.34

 std 1930.6 49.17 4720.7 10.24 0.16 40.28 2076.6 1.44 199.9 36.46 954.98

 min 200 30 0.084 20 0.6 0 100 1 100 0 0.016

 25% 200 30 515.53 20 0.6 0 100 1 100 0 49.11

 50% 2000 75 2097.87 35 0.8 50 1500 3 500 45 136.8

 75% 2000 150 5957.7 45 1 100 5000 3 500 90 281.8

 max 5000 150 19999.1 45 1 100 5000 4.5 500 90 4952.4
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Table 4. Numerical simulation result samples
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 200 75 35 0.8 50 100 4.5 100 45 8.63 or 73.0

 200 75 45 1.0 50 100 4.5 500 45 6.92 dr 112.4

 5000 150 35 1.0 0 5000 1.0 500 45 7.66 dr 4067.5

 5000 150 35 0.8 100 100 1.0 500 90 8.57 bb 3536.5

 200 30 20 0.6 50 100 4.5 500 90 7.52 bb 24.0

 2000 150 35 1.0 100 1500 1.0 100 90 9.05 dr 1920.3

 5000 150 35 1.0 50 100 1.0 100 0 7.73 or 199.8

 200 150 35 1.0 0 1500 1.0 100 0 0.81 or 15.0

 200 150 45 0.6 100 5000 3.0 100 90 9.51 dr 151.0

 200 150 45 0.6 100 100 4.5 100 0 8.83 dr 109.7

 

Table 5. Transformed simulation result samples
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X
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X
2 

X
3 

X
4 

X
5 

X
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X
7 

X
8 

X
9 

X
10

 

X
11

 

X
12

 

 

 -0.881 -0.185 0.1919 0.0004 0.0766 -1.057 1.4592 -1.019 -0.039 0.7371 0 0 1  

 -0.881 -0.185 1.168 1.2253 0.0766 -1.057 1.4592 0.9812 -0.039 -0.200 0 1 0  

 1.605 1.339 0.191 1.2253 -1.164 1.3027 -0.970 0.9812 -0.039 0.2052 0 1 0  

 1.605 1.339 0.191 0.0004 1.3179 -1.057 -0.970 0.9812 1.1948 0.7052 1 0 0  

 -0.881 -1.100 -1.272 -1.224 0.0766 -1.057 1.4592 0.9812 1.1948 0.1302 1 0 0  

 0.051 1.339 0.191 1.2253 1.3179 -0.382 -0.970 -1.019 1.1948 0.9701 0 1 0  

 1.605 1.339 0.191 1.2253 0.0766 -1.057 -0.970 -1.019 -1.273 0.2444 0 0 1  

 -0.881 1.339 0.191 1.2253 -1.164 -0.382 -0.970 -1.019 -1.273 -3.556 0 0 1  

 -0.881 1.339 1.168 -1.224 1.3179 1.3027 0.4179 -1.019 1.1948 1.2243 0 1 0  

 -0.881 1.3393 1.1681 -1.224 1.3179 -1.057 1.4592 -1.019 -1.273 0.8494 0 1 0  
 

Figure 6. Mean absolute error trend on training & validation
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Figure 7. Pressure drop prediction (simulation vs model) on testing dataset

 

Figure 8. Model feature importance
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Figure 9. FBHP result comparison

 

for regularization. Training was conducted for 300 
maximum epochs with a batch size of 8,192. The best 
results were achieved using One-Hot Encoding for 
the VLP feature and the logarithmic transformation 
of the Flowrate feature, which reduced the data 
skewness. 

As shown in Figure 6, the training & validation 
MAE were initially very high (446.1 and 387.8 psia), 
indicating that the model had not yet recognized data 
patterns. Over time, the model gradually improved its 
predictions, achieving its best performance at epoch 
296 with training and validation MAE of 8.37 and 
7.69 psia. This significant reduction demonstrated 
that the model successfully generalized the data and 
made accurate pressure predictions relative to the 
scale of the pressure drops data. 

This best model was then tested on the testing 
dataset and the comparison plot between simulated 
pressure drops versus predicted pressure drops of this 
testing dataset is shown in Figure 7. The plot shows 
an R² value of 0.9993 and testing MAE of 7.8259 
psia. This demonstrates that the model performs 
excellent on predicting the pressure drops of all the 
variations of data.

In addition to that performance metrics 
evaluation, the influence of each input variable 
on the model’s performance was also ranked. This 
feature importance analysis was carried out using 
the permutation of the feature importance method 
from the scikit-learn library by randomly shuffling 
the values of each variable in turn, then measuring 
the decrease in the model’s accuracy caused by this 
change. Figure 8 concludes that the variables with 
the greatest impact on the model were log flowrate, 
tubing diameter, water cut, gas-oil ratio, segment 
length, and inlet pressure. Other variables like 
tubing inclination, temperature, American petroleum 
institute  gravity, type of VLP, and gas specific 
gravity, although not as dominant, still influenced the 
model, enabling it to achieve high accuracy.

Figure 9 compares the FBHP results from the 
developed model with those from the numerical 
simulation. The analysis was conducted at a 
temperature of 75 °C, flow rate of 500 STB/day, 
American petroleum institute  gravity of 45, gas 
specific gravity of 0.8, water cut of 50%, gas–oil ratio 
of 3,000 SCF/STB, and tubing diameter of 3.0 inches, 
using the Beggs-Brill correlation, with the detailed 
well trajectory also shown in the chart. At FTHP 
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GLOSSARY OF TERMS
 

 Symbol Definition Unit  

 ANN Artificial Neural Network -  
 API American Petroleum Institute 

(in API Gravity) 

°API 
 

 DIAM Tubing Diameter in  
 ELU Exponential Linear Unit 

(activation function) 

- 
 

 FBHP Flowing Bottomhole Pressure psia  
 FTHP Flowing Tubing Head Pressure psia  
 GOR Gas–Oil Ratio SCF/STB  
 KNN k-Nearest Neighbour (machine 

learning algorithm) 

- 
 

 LSTM Long Short-Term Memory 

(type of recurrent neural 

network) 

- 

 

 MAE Mean Absolute Error psia  
 MAPE Mean Absolute Percentage 

Error 

% 
 

 NRMSE Normalized Root Mean Square 

Error 

fraction 
 

 PSO-ANN Particle Swarm Optimization - 

Artificial Neural Network 

- 
 

 R² Coefficient of Determination -  
 RF Random Forest (machine 

learning algorithm) 

- 
 

 ReLU Rectified Linear Unit -  
 SCF Standard Cubic Feet -   
 STB Stock Tank Barrel -  
 SVM Support Vector Machine -  
 SVR Support Vector Regression -  
 VLP Vertical Lift Performance -  
 WCUT Water Cut %  

 

percentage errors were 1.54%, 3.07%, and 0.06%, 
respectively. These results demonstrated that the 
model closely reproduced the simulation outcomes, 
with acceptable deviations. Moreover, from the 
pressure trends along the wellbore from wellhead 
to bottomhole, the pressure profiles generated by 
both methods nearly coincided, indicating a strong 
consistency between the model and the simulation. 

CONCLUSION
The results of this study indicated that the 

developed machine learning model could estimate 
pressure drops and predict FBHP with a high degree 
of accuracy across the simulated well conditions. 
The model achieved very small errors and an R² 
value for testing dataset of 0.9993, suggesting strong 
capability in capturing the relationships between 
input variables and FBHP. However, it should be 
emphasized that these results were obtained primarily 
from numerically generated datasets, which, while 
extensive and diverse, may not capture the full 
variability of real field data. Therefore, although the 
model showed strong potential for application in well 
performance monitoring, further testing with field-
scale datasets and practical deployment scenarios is 
necessary to confirm its reliability and scalability in 
real-world operations. To extend this study further, 
future research could expand the scope of pressure 
drop calculations to include gas wells, which would 
broaden the production scenarios. Deployment 
could also be scaled beyond individual wells to 
entire production networks, enabling comprehensive 
system-wide not only well’s FBHP but also pressure 
profile in production networks. Additionally, 
integrating more vertical flow correlations and more 
machine learning algorithms could also improve 
prediction accuracy by making better representation 
of various conditions. 
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values of 50, 200, and 500 psia, the developed model 
predicted FBHP values of 129.8, 293.0, and 640.2 
psia, while the numerical simulation produced 127.8, 
302.3, and 640.6 psia. The corresponding absolute 
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