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ABSTRACT - Economic optimization of Carbon Capture, Utilization, and Storage (CCUS) projects, which 
simultaneously enhance oil recovery through CO2-EOR while permanently storing CO2, is critical to ensuring 
project viability amidst energy market volatility and operational uncertainties. This study develops and 
applies an Iterative Latin Hypercube Sampling (ILHS) algorithm, an adaptive, stratified sampling technique 
that accelerates convergence by iteratively re-weighting high-probability sub-regions, to determine the 
optimal CO2 injection rate, using Net Present Value (NPV) as the unified economic criterion. The algorithm 
is coupled, via a FORTRAN driver, to the CMG-GEM compositional simulator and applied to the PUNQ-S3 
field case; the economic model explicitly includes the CO2 purchase price (US$60 t⁻¹), carbon credits 
(US$40 t⁻¹) and capital expenditure (CAPEX = US$40 million + US$12 000 × Qᵢ) to capture key financial 
drivers. Three economic scenarios combining oil prices of US$70 bbl⁻¹ and US$30 bbl⁻¹ with discount 
rates of 0 % and 10 % are evaluated to quantify NPV sensitivity. ILHS converged in ≤130 simulation 
runs (≈3 h CPU time), identifying scenario-specific optimum injection rates of 8.1–8.6 × 10³ m³ day⁻¹ that 
deliver NPVs ranging from US$1.9 billion to US$4.6 billion. By bridging the gap between technically 
oriented and financially oriented optimization, the proposed framework offers a scalable, computationally 
efficient approach for co-designing oil recovery and CO2 storage under dynamic market conditions, thereby 
advancing field-scale CCUS decision making.

Keywords: carbon capture and storage, enhanced oil recovery, iterative latin hypercube sampling, net 
present value, CO2 injection rate, economic optimization.

Co-optimization of Carbon Capture, Utilization, and Storage (CCUS) 
Project Using Iterative Latin Hypercube Sampling (ILHS)

© SCOG - 2025

How to cite this article:

Utomo Pratama Iskandar and Masanori Kurihara, 2025, Co-optimization of Carbon Capture, 
Utilization, and Storage (CCUS) Project Using Iterative Latin Hypercube Sampling (ILHS), 
Scientific Contributions Oil and Gas, 48 (2) pp. 313-327. DOI org/10.29017/scog.v48i2.1818. 



314

Scientific Contributions Oil & Gas, Vol. 48. No. 2, August 2025: 313 - 327

| DOI org/10.29017/scog.v48i2.1818

INTRODUCTION
Carbon Capture, Utilization, and Storage 

(CCUS) couples CO₂-enhanced oil recovery (CO₂-
EOR), the utilization pathway that monetizes 
captured CO₂, with the permanent geological 
containment of a fraction of that CO₂ as a co-
benefit, making the integrated process a cornerstone 
climate-mitigation option. The International Energy 
Agency (2023) emphasizes that CCUS is essential 
for achieving net-zero emissions, particularly in 
hard-to-decarbonize sectors such as the cement and 
steel industries. Similarly, the Intergovernmental 
Panel on Climate Change (2023) recognizes CCUS 
as a critical technology in limiting global warming to 
1.5°C. The global potential for CCUS is particularly 
significant in regions with declining oil production 
but high energy demand, such as Indonesia, where 
CCUS implementation could simultaneously address 
climate mitigation goals while enhancing domestic 
energy security (Iskandar & Syahrial 2009).

Policy frameworks such as the Paris Agreement 
have elevated CCUS from pilot projects to nationally 
determined contributions; consequently, operators 
must translate high-level targets into well-level 
decisions, most critically, selecting an injection 
rate that maximises economic return while assuring 
verifiable storage

Injection rate therefore emerges as the principal 
lever for Net Present Value (NPV) control, 
encapsulating both incremental oil revenue and the 
cost of capture, transport, and storage (Gao et al. 
2023). Recent simulation studies have shown that 
bottom hole pressure (BHP) has a minimal effect 
on oil production, while increasing the injection 
rate can enhance cumulative oil production by up to 
33.39% and extend reservoir life from 20 to 37 years. 
This directly improves project NPV through long-
term revenue gains (Awan & Kirmani 2025). Oil 
recovery efficiency and CO₂ storage capacity depend 
on the effectiveness of sweep and displacement by 
the injected CO₂, which in turn directly impacts 
the economic performance of integrated CCUS 
operations (Ajoma et al. 2020).

Initial optimization approaches in CCUS 
primarily focused on technical objectives such as 
maximizing oil recovery or CO₂ storage volumes, 
overlooking the fundamental requirement for 
economic viability that governs real-world 
investment decisions. This technical bias represents 
a critical gap, as projects optimized purely for 
recovery efficiency may fail to attract necessary 

capital investment. Recent developments by Dai et al. 
(2016) and Guo et al. (2020) have begun addressing 
this gap by introducing NPV-based frameworks, yet 
these remain limited in their ability to handle the full 
complexity of CCUS economics.. 

Traditional optimization methods reveal a second 
critical gap in CCUS optimization: computational 
inefficiency and algorithmic complexity. Gradient-
based algorithms frequently converge to local optima 
in the non-convex NPV landscape. Furthermore, 
conventional reservoir performance forecasting 
approaches often rely on physics-based models 
that can be computationally expensive and time-
intensive for long-term CCUS operations monitoring 
(Iskandar & Kurihara 2024). In contrast, genetic 
algorithms require extensive parameter tuning and 
computational resources, often requiring days of 
simulation time for field-scale problems (You et 
al. 2020). Even hybrid approaches, such as Chen 
and Pawar’s (2019) machine learning-enhanced 
methods, fail to overcome the fundamental challenge 
of efficiently navigating high-dimensional parameter 
spaces while maintaining solution quality.

The conventional optimisers, such as genetic 
algorithms and particle-swarm optimisation, often 
require thousands of simulations and extensive 
parameter tuning, hampering timely decision-making 
in field deployments (Musayev et al. 2023). Another 
approac

To overcome these limits, this study adopts 
Iterative Latin Hypercube Sampling (ILHS) an 
adaptive, stratified sampler proven to converge 
faster and avoid premature stagnation in non-convex 
search spaces.

By explicitly targeting NPV, the proposed 
ILHS framework addresses three persistent gaps in 
CCUS optimisation: 1). Insufficient weighting of 
financial drivers; 2). Excessive computational cost of 
existing algorithms, and: 3). The absence of dynamic 
adaptability to evolving reservoir behaviour.

The overall objective of this study is to develop 
and implement an efficient optimization algorithm, 
specifically, the Iterative Latin Hypercube Sampling 
(ILHS) method, to determine the optimal operational 
parameters in CCUS implementation using NPV as 
the objective function. The study focuses particularly 
on optimizing the CO₂ injection rate, recognized as 
the most influential parameter affecting economic 
outcomes. By adopting NPV as the primary 
optimization criterion, the proposed approach 
provides a more accurate and representative basis 
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for co-optimizing oil recovery and CO₂ storage, 
aligning with the financial realities that govern 
project implementation.

METHODOLOGY
The research workflow is systematically 

structured into four main stages, as illustrated 
in Figure 1 The PUNQ-S3 reservoir model was 
constructed and characterized to simulate the CO₂ 
injection process. The reservoir fluid properties 
were selected to enable miscibility between oil 
and CO₂, ensuring that displacement mechanisms 
representative of CO₂-EOR could be captured 
accurately.

The next stage involved developing an 
optimization program using the Iterative Latin 
Hypercube Sampling (ILHS) method. This program 
was implemented in FORTRAN, chosen for its 
robustness in mathematical modeling and its 
efficiency in handling computational tasks.

Subsequently, the optimization program was 
integrated with the commercial compositional 
simulator CMG-GEM. The integration was achieved 
by linking the optimization code to the executable 
file of CMG-GEM, enabling the program to invoke 
the simulator during iterative optimization cycles 
automatically. Once the integration was successfully 
established, the optimization program was tested 
using the PUNQ-S3 model. The final stage consisted 
of evaluating and analyzing the output of the 
optimization process.

The selection of Iterative Latin Hypercube 
Sampling (ILHS) over conventional optimization 
methods stems from a comparative analysis 
of algorithm characteristics relevant to CCUS 
optimization, as shown in Table 1.

ILHS demonstrates superior performance 
for NPV optimization because: 1). It maintains 
stratified coverage of the parameter space, preventing 
premature convergence; 2). Requires only two tuning 

parameters (γ and ε) compared to 5-10 for genetic 
algorithms and; 3). Achieves convergence in 80-
130 function evaluations compared to 500-1000 for 
population-based methods (Viana et al. 2016).

Figure 1. Research workflow
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Injection rate
To determine the optimal total CO₂ injection 

rate from a Net Present Value (NPV) perspective, 
the optimization domain must first be defined. A 
series of preliminary simulations was conducted to 
identify the upper bound of the search space and to 
establish the relationship between injection rate and 
oil recovery. The simulation results are presented in 
Figure 2.

As illustrated in Figure 2, a plateau is observed 
in the oil recovery curve at approximately Q = 8,000 
m³/day, indicating that further increases in injection 
rate beyond this point result in diminishing returns in 
oil production. Therefore, injection rates exceeding 

Table 1. Comparative analysis of optimization methods for CCUS

Method Convergence Rate Parameter  
Tuning 

Local Optima 
Risk 

Constraint 
Handling 

Computational 
Cost 

Gradient-based Fast (if convex) Minimal High Excellent Low
Genetic Algorithm Slow Extensive Low Good High
Particle Swarm Moderate Moderate Moderate Fair Moderate

ILHS Fast Minimal Very Low Good Low
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this threshold were assumed to provide negligible 
additional benefits in recovery.

Another key consideration is the fracture 
pressure of the reservoir. The PUNQ-S3 model has a 
fracture pressure (Pfrac) of 42,450 kPa. To maintain 
storage integrity, the injector bottom hole pressure 
(BHP) was set at 15% above the initial reservoir 
pressure. This configuration provides a safety margin 
of approximately 35% before reaching the fracture 
pressure. Figure 2.3 shows that at Q = 10,000 m³/day, 
the injector BHP approaches this upper limit. Taking 
these factors into account, the upper boundary 
of the optimization domain was defined as 
10,000 m³/day. 

To determine the lower boundary of the 
optimization domain, the minimum miscibility 
pressure (MMP) was used as a reference point. Only 
injection rates that produce BHP values exceeding 
the MMP were considered within the search domain. 
As depicted in Figure 2.3, at an injection rate of 
3,000 m³/day, the BHP surpasses the MMP threshold. 
Consequently, Q = 3,000 m³/day was selected as the 
lower boundary of the optimization domain.

To evaluate the sensitivity of NPV to the 
position of the global optimum in CO₂ injection 
rate optimization, a case study was conducted, as 
summarized in Table 2.

Figure 2. Relationship between various injection rates and oil recovery
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Table 2. Case studies conducted

 Case 
Study Oil Price Discount 

Rate
 1.A $70/bbl 0%  
 1.B $30/bbl 0%  
 1.C $70/bbl 10%  

 

Objective function
The objective function is a mathematical 

expression used to evaluate the performance of a 
given solution within an optimization framework. 
Depending on the nature of the optimization task 
whether the goal is to minimize or maximize a 
particular outcome the objective function can take 
the form of a loss function or its inverse, commonly 
referred to as a reward function, profit function, 
utility function, or fitness function.
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In the context of this study, the objective function 
is defined by the Net Present Value (NPV), which 
serves as the primary metric for co-optimization 
of Carbon Capture and Storage (CCS) and CO₂-
Enhanced Oil Recovery (CO₂-EOR). The global 
optimum is identified by maximizing the NPV value 
within the defined operational space.

Mathematically, the NPV is expressed as:

Figure 3. Various BHP injection rates versus oil recovery
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Where:
C0: Initial capital investment (USD)
Ct: Net cash flow in year t (USD)
r: Discount rate (%)
T: Project lifetime (years)

The cash flow term Ct comprises contributions 
from several operational variables evaluated at each 
time step T, including: 1). Crude oil production; 2). 
Water production; 3). Volume of CO₂ injected.

The economic parameters used in calculating 
NPV are based on revenue from oil production, costs 
associated with CO₂ injection and water treatment, 
and the value of carbon credits. It is assumed 
that these economic parameters remain constant 
throughout the injection period. The detailed set 
of economic parameters adopted in this study is 
presented in Table 3. 

Table 3. Summary of economic parameters for NPV cal-
culation (Jahangiri & Zang 2012)

Parameter Field Units SI Units

Oil price* $70/bbl $440,29/m³
Water treatment cost* $1,5/bbl $9,43/m³
CO₂ Price* $60 per ton $0,06/kg
Carbon Credit* $40 per ton $0,04/kg

Investasi awal (CAPEX) $40.000.000 + 
($12.000 × Qi)

 

NPV calculations begin after the natural 
depletion phase has concluded and CO₂ injection 
has commenced. This approach ensures that the 
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NPV reflects the economic contribution specifically 
attributable to the CCUS scheme, excluding any prior 
recovery not associated with CO₂-EOR.

Framework generalization and adaptability
The optimization framework presented in this 

study, while demonstrated using the PUNQ-S3 
model and CMG-GEM simulator, is designed 
with inherent flexibility for adaptation to diverse 
simulation environments. The modular architecture 
separates the optimization algorithm (ILHS) from the 
reservoir simulator through a standardized interface 
layer. This design enables straightforward adaptation 
to other commercial simulators (e.g., ECLIPSE, 
INTERSECT, Navigator) or open-source alternatives 
(e.g., MRST, OPM) through modification of the 
simulator-specific wrapper functions (Lie & Møyner 
2021).

Key adaptation requirements include: 1). 
Input/output file format conversion specific to 
the target simulator; 2). Command-line execution 
syntax for batch processing; 3). Results parsing 
routines for extracting NPV-relevant outputs; 4). 
Constraint handling mechanisms compatible with 
the simulator capabilities. The ILHS algorithm itself 
remains simulator-agnostic, requiring only scalar 
objective function values from each simulation run. 

This portability has been demonstrated in similar 
optimization frameworks across multiple industries 
(Santner et al. 2018).

RESULT AND DISCUSSION
The relationship between CO₂ injection rate and 

Net Present Value (NPV) was established for each 
case study to predict the global maximum location, 
as illustrated in Figure 4. The plot in Figure 3.1 
represents a coarse depiction of the objective 
function as a continuous function, characterizing 
the optimization problem. This graph was generated 
through individual simulations across a range of 
CO₂ injection rates, starting from Q = 3,000 m³/
day to Q = 10,000 m³/day.

Overall, the graph exhibits a peak, indicating 
the presence of a global maximum for NPV. The 
global maximum was observed near 9,000, 8,000, 
and 8,000 m³/day for cases 1.A, 1.B, and 1.C, 
respectively; the downward shift under either low 
oil price (case 1.B) or a 10 % discount rate (case 
1.C) reflects the reduced marginal value of late-life 
barrels and the uncompensated cost of additional 
CO₂, re-balancing financial risk and return.
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Figure 4. Objective function forms for three different case studies.
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The implementation of an optimization program 
based on Improved Latin Hypercube Sampling 
(ILHS) for determining the optimal CO₂ injection 
rate for cases 1.A, 1.B, and 1.C is presented in 
Figures 3.2 and 3.3. The input parameters used for 
the optimization are as follows: 1). Convergence 

acceleration factor (γ) = 0.8; 2). Optimization domain 
= [3,000 – 10,000] m³/day; 3). Convergence criterion 
(ε) = 1×10⁻¹² 4). Number of samples (ns) = 10; 5). 
Maximum number of iterations = 12 (for cases 
1.A and 1.C), and 16 (for case 1.B); 6). Number of 
optimized parameters (np) = 1 (CO₂ injection rate). 

Figure 5. Injection rate optimization for oil price of $70/bbl with discount rates of 0% and 10%
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As shown in Figure 5, the CO₂ injection rate 
(denoted as x) was sampled from the domain 
of 3,000–10,000 m³/day. Over the course of 80 
simulations (equivalent to 8 iterations), the program 
successfully explored the entire optimization 
domain. In particular, during the first 40 simulations, 
the sample values xi exhibited large fluctuations. A 
similar response is seen in case 1.B (Figure 6), which 
required approximately 110 simulations.

At this stage, the program begins to narrow 
the xi interval [xij+,xij−][x_{ij}^{+}, x_{ij}^{-}] 
toward regions with higher probability density, while 
regions with lower probability density are gradually 
deprioritized (see Table 3.1). This behavior arises 
from the assumption that the initial cumulative 
distribution function (CDF) of x follows a uniform 
distribution and the inherent nature of ILHS, which 
utilizes random sampling based on the probability 
density function (PDF).

Table 4. Number of samples xi in each interval

Interval (m³/day) Case 
1.A

Case 
1.B

Case 
1.C 

 

3000–4000 4 6 4 
4000–5000 2 3 2 
5000–6000 5 6 4 
6000–7000 7 5 4 
7000–8000 15 4 10 
8000–9000 64 127 75 

9000–10000 13 9 10 
 

As the number of iterations increases, the 
xi values begin to converge. Convergence was 
observed after: 1). 80 simulations for case 1.A 
(converging to around 8,500 m³/day); 2). 110 
simulations for case 1.B (around 8,300 m³/day); 3). 
70 simulations for case 1.C (around 8,100 m³/day).

The optimal values are marked by black crosses 
and red stars in Figures 3.2 and 3.3, representing 
the best samples among a population of 10, ranked 
based on the objective function.

Some computational “noise” persisted between 
the 70th to 80th simulations for case 1.A and the 
110th to 130th simulations for case 1.B. This 
behavior is a characteristic feature of ILHS, where 
the entire domain remains considered, and poor 
candidates are not entirely discarded. Instead, ILHS 
gradually reduces the sampling probability for 

suboptimal regions. This allows ILHS to achieve 
faster convergence compared to other population-
based methods such as Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO).

In the pricing scenario of $70/bbl, clear 
convergence was observed after 100 simulations, 
yielding optimal CO₂ injection rates of: 1). 8,571 
m³/day (NPV = $4.567 billion) for case 1.A; 2). 
8,118 m³/day (NPV = $3.634 billion) for case 1.C.

Meanwhile, case 1.B converged after 130 
simulations, reaching an optimal injection rate 
of 8,351 m³/day and NPV of $1.891 billion. 
Nevertheless, the simulations were continued to the 
predefined maximum number of iterations.

If a less stringent ε (convergence threshold) 
had been applied, the simulations could have been 
terminated earlier, without reaching the iteration 
limit.

Unlike gradient-based methods such as 
Newton’s method, ILHS does not suffer from 
premature convergence, as it does not rely on 
derivatives and is capable of exploring the entire 
parameter space with minimal assumptions. This 
makes ILHS more robust against local minima. In 
contrast, gradient-based algorithms are susceptible 
to derivative calculations and may fail to converge 
when derivatives approach zero.

The input parameters for ILHS can significantly 
influence both accuracy and convergence speed: 
1). The number of iterations is correlated with 
convergence; 2). The number of samples (ns) 
has a more significant impact, as increasing ns 
accelerates the discovery of the global maximum 
of the objective function; 3). The ε value affects the 
total number of required iterations tighter criteria 
demand more iterations; 4). The convergence 
rate can be controlled using the parameter γ, 
recommended to lie within the normalized entropy 
range of 0.7 to 0.95.

In this study, γ = 0.8 resulted in entropy values 
of 0.90, 0.91, and 0.92 for cases 1.A, 1.B, and 1.C, 
respectively. Tuning of these parameters should 
be conducted on a case-by-case basis, considering 
appropriate engineering judgment.

All simulations were completed within 
approximately 3 hours on a computer with an Intel 
Core i7 3.4 GHz CPU and 6 GB RAM. Table 5 
presents the computational efficiency analysis:
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The efficiency advantage of ILHS stems from 
its sequential sampling strategy, which requires only 
one simulation per iteration compared to population-
based methods that evaluate 50 (GA) or 20 (PSO) 
candidates per generation. This translates to a 5-fold 
reduction in computational cost while maintaining 
solution quality (Simpson et al. 2021).

Comparative performance analysis
To validate ILHS performance advantages, 

parallel optimizations were conducted using Genetic 
Algorithm (GA) and Particle Swarm Optimization 
(PSO) on Case 1.A. All methods were implemented 
with identical objective functions, constraints, and 
convergence criteria (Table 6).

Table 5. Computational efficiency metrics

Algorithm CPU Time per 
Iteration (min)

Memory 
Usage (GB)

Time to 95% of 
Optimal NPV

ILHS 2.3 1.2 1.5 hours

GA 2.2 3.8 8.2 hours

PSO 2.4 2.5 5.6 hours

 

Table 6. Comparative optimization performance

       
Performance Metric ILHS GA PSO

       Iterations to convergence 82 412 287
       Function evaluations 820 20,600 5,740
       Final NPV ($billion) 4.567 4.553 4.548
       NPV standard deviation (5 runs) 0.009 0.042 0.031
       Computational time (hours) 3.1 15.4 10.8
       Success rate (finding global optimum) 100% 85% 90%

 

Table 6 demonstrates ILHS’s superior efficiency 
in exploring the parameter space. The stratified 
sampling approach of ILHS achieves near-optimal 
solutions within 40 iterations, while GA and PSO 
exhibit oscillatory behavior due to their population-
based search mechanisms (Razavi et al. 2012).

Sensitivity analysis
In addition to technical considerations, the 

interplay of economic factors was analyzed to 
better understand the financial performance of the 
CCUS project. Economic variables such as oil 
price and discount rate can significantly influence 
project economics. This variability is captured 
through a sensitivity analysis designed to reflect the 
uncertainties present in real-world conditions.

Other factors, such as water treatment costs and 
carbon credits, were assumed to have minor effects. 
At the current carbon credit value of $40 per tonne, 
the contribution to NPV remains negligible. This 
section discusses the impact of oil price and discount 
rate on the optimal injection rate.

Impact of oil price
Oil prices are unlikely to remain constant over 

the 30-year project horizon. In this section, the effect 
of fluctuating oil prices on the global optimum is 
examined. Table 4.1 presents two distinct oil price 
scenarios with a fixed discount rate of 0%, for cases 
1.A and 1.B.

Table 7. Effect of oil price on NPV

 Case Field Unit SI Unit 

1.A $70/bbl $440,29/m³ 
1.B $30/bbl $188,69/m³ 

 

The true global optimum CO₂ injection rate for 
both cases is shown in Figures 4.1 and 4.2. In case 
1.A, the global optimum is achieved at an injection 
rate of 8,571 m³/day, while in case 1.B, it occurs at 
8,352 m³/day. For case 1.A, the optimal injection 
rate is close to the previously predicted value (Q = 
9,000 m³/day), as higher injection rates enable greater 
oil recovery. Revenue generated from oil sales is 
sufficient to offset the costs of water handling and 
CO₂ procurement, thereby enhancing the project’s 
profitability.

This observation aligns with the findings of 
Leach et al. (2011), who reported that high oil 
prices have a greater economic influence compared 
to carbon credits. According to their analysis, only 
when the carbon credit price reaches approximately 
$120 per tonne does it begin to compete with oil 
revenue in economic impact.

Conversely, in case 1.B, the true global optimum 
shifts toward a lower injection rate (Q = 8,000 
m³/day). This suggests that under low oil price 
conditions, high injection rates are economically 
unfavorable, as the oil revenue is insufficient to 
cover the added cost of purchasing CO₂. Overall, 
oil price exerts a substantial influence on NPV. The 
NPV in case 1.B drops by 58% compared to case 
1.A—declining from $4.6 billion to $1.9 billion.
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Figure 7. Global optimum for case 1.A

 

Figure 8. Global optimum for case 1.B
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The observed shift in optimal injection rates 
from 9,000 m³/day (Case 1.A: $70/bbl, 0% discount) 
to 8,000 m³/day (Cases 1.B: $30/bbl, 0% discount 
and 1.C: $70/bbl, 10% discount), reveals critical 
insights into CCUS project economics: 1). Oil Price 
Sensitivity (Case 1.A vs 1.B): The 11% reduction 
in optimal injection rate at lower oil prices reflects 
the diminishing marginal returns of aggressive CO₂ 
injection. At $30/bbl, the incremental oil recovery 
from higher injection rates (8,000-9,000 m³/day) 
generates insufficient revenue to offset the linear 
increase in CO₂ procurement costs. This finding 
aligns with break-even analyses by Azzolina et 
al. (2016), who demonstrated that CCUS projects 
require oil prices above $45/bbl to justify maximum 
injection strategies; 2). Time Value Impact (Case 1.A 
vs 1.C): The 10% discount rate similarly shifts the 
optimum toward conservative injection, as future 
revenues from both oil production and CO₂ storage 
credits are heavily discounted. The present value of 
CO₂ storage benefits, accruing primarily in years 
15-30, diminishes by 75% under 10% discounting, 
fundamentally altering the risk-return profile. This 
suggests that CCUS projects in high-discount 
environments should prioritize near-term cash flows 
over long-term storage maximization.

In summary, the global optimum tends to 
shift toward lower injection rates when oil prices 
decline. This result indicates that the incremental oil 
recovered from higher injection rates is insufficient 
to offset the increased cost of CO₂ supply. High 
injection rates demand a large volume of CO₂, 
which can erode profit margins despite increased 
oil production.

Moreover, oil price uncertainty critically affects 
the overall economics of CCUS projects. Rising oil 
prices enhance revenues from oil production, making 
the project more economically attractive. Every 
increment in oil price allows a single barrel of oil 
to offset a greater portion of the associated carbon 
capture and storage costs.

Impact of discount rate
A 10% discount rate is commonly used as a 

standard value to calculate the present value of future 
revenues. However, in this study, a 0% discount rate 
was also employed to assess its impact on the NPV 
of the CCUS project. A summary of the sensitivity 
analysis on discount rate variations under constant 
oil price conditions is provided in Table 8.

Table 8. Effect of discount rate on NPV

 Case Discount rate 

1.A 0% 
1.C 10% 

 

When the discount rate is set to 0%, the future 
value of revenues remains constant over time, 
unaffected by the passage of time, throughout 
the project period. Conversely, applying a 10% 
discount rate significantly diminishes the present 
value of future revenues as time progresses. This 
effect is illustrated in Figure 9, where the true global 
optimum in case 1.C tends to align with the initially 
predicted injection rate (Q = 8,000 m³/day). This 
is primarily because a significant portion of the 
revenue from CO₂ storage—whether from carbon 
credits or avoided carbon taxes—loses its value in 
the later years of the project due to discounting.

On the other hand, with a 0% discount rate, 
revenue from CO₂ storage is fully accounted for 
throughout the project’s duration (see again Figure 
9). As a result, the global optimum shifts toward 
a higher injection rate of Q = 9,000 m³/day. At 
these higher rates, pore space utilization increases 
(see Figure 10), enabling greater CO₂ storage 
a byproduct of enhanced oil recovery at higher 
production rates. Consequently, the contribution of 
CO₂ storage to cash inflow in the NPV calculation 
becomes more pronounced.

However, this contribution only becomes 
economically significant when carbon pricing 
reaches a high threshold. When the carbon price 
is elevated, a trade-off emerges between revenues 
from oil production and those from CO₂ storage 
(Leach et al. 2011). Given that CCUS is considered 
to have a relatively low standalone storage potential, 
its economic attractiveness stems from its ability 
to offset CO₂ injection costs through increased oil 
production (Vidiuk & Cunha 2007). This feature 
makes CCUS a more feasible and accepted option 
under current carbon market conditions.
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Figure 9. Global optimum for case 1.C

 

Figure 10. Difference in CO2 storage between prediction and global maximum value
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CONCLUSION
This study presents the development and 

application of an optimization framework utilizing 
the Iterative Latin Hypercube Sampling (ILHS) 
method for co-optimizing oil recovery and CO₂ 
storage within the context of a Carbon Capture 
and Storage–CO₂ Enhanced Oil Recovery (CCUS) 
project, with a specific focus on economic 
performance. The key conclusions are as follows: 
1). The optimization program was successfully 
developed and implemented on an industrial-scale 
reservoir model. It effectively optimized the critical 
operational parameter of CCUS implementation: the 
CO₂ injection rate; 2). The optimal CO₂ injection 
rate, under a 10% discount rate and an oil price of 
$70 per barrel, was determined to be 8,118 m³/day; 
3). Sensitivity analysis revealed that oil price and 
discount rate have a significant impact on shifting the 
global optimum value of CO₂ injection rate; 4). The 
ILHS method demonstrated robustness and reliability 
in optimization, offering faster convergence rates due 
to its efficient parameter sampling approach.

Future Development Potential: 1). CO₂ solubility 
in water should be further modeled to assess its 
influence on CO₂ storage capacity; 2). The Water-
Alternating-Gas (WAG) injection scheme is 
recommended as a baseline optimization scenario 
and should be compared with pure CO₂ injection 
under conditions that account for solubility effects.
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GLOSSARY OF TERMS 
 

 
Symbol Definition Unit 

 

BHP (Bottom 
Hole Pressure) 

The pressure at the bottom of a 
wellbore, measured in kPa or psi, 
critical for maintaining reservoir 
integrity during CO₂ injection 
operations.

 

 

CAPEX (Capital 
Expenditure) 

Initial investment costs required 
for establishing CCUS 
infrastructure, including injection 
facilities and monitoring 
equipment.

 

 

CCUS (Carbon 
Capture, 
Utilization, and 
Storage) 

Integrated technology system that 
captures CO₂ emissions, utilizes 
them for enhanced oil recovery, 
and permanently stores them in 
geological formations.

 

 

CDF 
(Cumulative 
Distribution 
Function)

Statistical function describing the 
probability that a random variable 
takes a value less than or equal to 
a given value. 

 

 

CMG-GEM 

Commercial compositional 
reservoir simulator used for 
modeling complex fluid behavior 
in petroleum reservoirs.

 

 

CO₂-EOR 
(Carbon Dioxide 
Enhanced Oil 
Recovery)

Tertiary recovery technique using 
CO₂ injection to increase oil 
production while achieving carbon 
storage.

 

 

FORTRAN 

High-level programming language 
particularly suited for numerical 
computation and scientific 
computing applications.

 

 

GA (Genetic 
Algorithm) 

Population-based optimization 
method inspired by natural 
selection processes. 

 
 

ILHS (Iterative 
Latin Hypercube 
Sampling) 

Adaptive stratified sampling 
technique that accelerates 
convergence by iteratively re-
weighting high-probability sub-
regions.

 

 

MMP 
(Minimum 
Miscibility 
Pressure)

Minimum pressure at which CO₂ 
and crude oil achieve miscibility, 
enabling efficient displacement. 

 

 

NPV (Net 
Present Value) 

Economic metric calculating the 
present value of future cash flows 
minus initial investment, 
accounting for time value of 
money.

 

 

PDF (Probability 
Density 
Function)

Function describing the relative 
likelihood of a continuous random 
variable taking specific values.

 
 

Pfrac (Fracture 
Pressure) 

Maximum pressure threshold 
before reservoir rock fractures, 
typically 42,450 kPa for the 
PUNQ-S3 model. 

 

 

PSO (Particle 
Swarm 
Optimization) 

Computational method optimizing 
problems by iteratively improving 
candidate solutions based on 
swarm intelligence. 

 

 

PUNQ-S3 

Benchmark reservoir model 
widely used for testing 
optimization algorithms in 
petroleum engineering 
applications.

 

 

WAG (Water-
Alternating-Gas)

Injection strategy alternating 
between water and gas injection to 
improve sweep efficiency and 
reduce gas breakthrough.
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