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ABSTRACT - Shear wave velocity (Vs) is recognized as an important elastic parameter for lithology and
fluid identification in oil and gas exploration. However, Vs data is not always recorded in well logs. Various
empirical approaches are often used to estimate Vs, but these methods show limitations in terms of accuracy
and time efficiency. With technological advances, machine learning has become an effective and efficient
alternative for predicting Vs from well log data. This study is utilizing the Bi-GRU model, a sophisticated
artificial neural network specifically designed to process sequential data. This capability makes Bi-GRU
particularly suitable for predicting log Vs data. Four Bi-GRU modeling scenarios are being developed
with different hyperparameter configurations and are being compared with ANN models using two input
variations: with and without Vp data. The results show that scenario 2 (Bi-GRU with five hidden layers,
batch size 64, learning rate 0.005) is achieve the best performance, with R? values of 0.9787 (without Vp)
and 0.9868 (with Vp). The MAE values obtained are being recorded as 9.36 (without Vp) and 11.22 (with
Vp). Compared to shows ANN, MLR, and empirical Castagna methods, the Bi-GRU model show a more
significant improvement in prediction accuracy. These findings are indicating that Bi-GRU have strong
potential for accurately and efficiently predicting Vs from well log data.
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INTRODUCTION

Rock elastic parameters, such as compressional
velocity (Vp), shear velocity (Vs), and density, play
a crucial role in reservoir characterization because
they are closely related to rock and fluid properties.
Shear wave velocity is a major factor in reservoir
prediction and is widely used to analyze lithology,
physical characteristics, and to detect and predict the
presence of fluids in reservoirs (Feng et al., 2024).

However, shear wave velocity (Vs) data are not
always available, even in mature wells or newly
drilled wells. Several factors contribute to this
limitation, including borehole conditions, restricted
logging technology, and high acquisition costs
(Wang et al., 2020). Vs is a key parameter in various
seismic-based reservoir description processes such
as prestack seismic inversion, fluid identification,
and amplitude varioation with offset (AVO) analysis
(Liu et al., 2023). Consequently, many researchers
have methods to predict shear wave velocity using
well log data.

Input Layer Hidden Layer 1

Hidden Layer 2 Hidden Layer n-1 Hidden Layer n

In general, the methods used for predictiong
shear wave velocity include empirical equations, rock
physics modeling, regression-based methods, and
machine learning approaches (Fu et al., 2024). The
empirical approach is a simple method based on the
characteristics of subsurface lithology. However, its
dependence on lithology results in reduced accuracy
when lithology variation occurs. Rock physics
modelling, while more comprehensive, becomes
complex when applied to highly heterogeneous
formations, as it requires accurate quantification
of pore structures and calibration with extensive
laboratory data. Machine learning method has
recently gained considerable attention due to their
ability to process large datasets and model nonlinear
relationships between input and target variables.
This makes them particularly effective for solving
geophysical interpretation problems (Arya et al.,
2024). In addition, this technology also allows
reservoir quality assessments to be carried out more
efficiently in terms of both time and cost (Dixit et
al., 2020).
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Figure 1. ANN Structure with an input, hidden, output layer. The input layer receives well log data, the hidden layers
process nonlinear relationships through neurons and activation functions, and the output layer generates the predicted
target variable (shear wave velocity, Vs)
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Advancements in computational efficiency and
improved prediction accuracy of various machine
learning (ML) methods in recent years have
encouraged the widespread application of ML for
Vs from well log data. Several previous studies,
such as those conducted by Rajabi et al. (2023),
Mousavi et al. (2024), Wang et al. (2020), and Fu et
al. (2024), have successfully applied ML approach
for Vs prediction.

Building upon these developments, this study
compares several traditional statistical methods with
advanced machine learning architectures to predict
Vs from well log data. Generally, the multiple linear
(MLR) algorithm is typically used to model linear
relationships among well log parameters; however, in
reality, not all variables exhibitlinear dependencies.
The Artificial Neural Network (ANN) can capture
nonlinear relationships between variables (Saputro et
al., 2016); however, ANN is not spesifically designed
to handle sequntial data with temporal dependencies,
making it less effective when temporal patterns are
significant.

The Bidirectional Gated Recurrent Unit (Bi-
GRU) presents a solution because it is able to capture
complex nonlinear relationships while utilizing
temporal information more comprehensively
(Salehinejad et al., 2017). Therefore, this study
applies Bi-GRU to predict Vs and compares its
performance with MLR, ANN, and empirical
Castagna.

METHODOLOGY

Empirical method of castagna

In this study, the prediction of Vs was
conducted using the empirical Greenberg-
Castagna relationship. The regression coefficient
for VS prediction in sandstone based on the
Greenberg-Castagna relationship are shown as
follows (Taheri et al., 2022):

Vs = 0.80416 = I}, — 0.855 (1)

where Vs is S-wave velocity and ¥» is P-wave

velocity.
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Figure 2. The general topology of the gate recurrent unit.

Table 1. Statistics on well data.

DEPTH RHOB GR NPHI DT:1 SDT SwW

count 801 801 801 801 801 801 801

mean 6.600 2388.655 102.801693 0.24252  92.348579  170.461403  0.794285
115.686

std 538 0.085091 13.131357  0.039777 4.784305 13.895691  0.251189

min 6.400 2.112900 66.140000 0.137  78.975100  139.763500 0.1959

max 6.800 2.495600  134.897300 0.3674 108.918800  224.003500  1.432000
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Multiple linear regression

Multiple Linear Regression (MLR) is an
extension of simple linear regression that utilizes
more than one independent variable to predict the
dependent variable. This allows MLR to capture
more complex relationships that may not be
observable when only a single predictor is used. By
involving multiple input variables, MLR provides
more stable and reliable estimates, especially when
multivariate relationships exist between parameters
(Akhundi et al., 2014).

Artificial neural network

Artificial Neural Networks (ANNs) (Figure
1) are layered computational models consisting
of interconnected processing units called neurons,
arranged in an input layer, one or more hidden layers,
and an output layers (Gomaa et al., 2024). ANNs are
inspired by the structure and function of biological
neural networks and are designed to model complex,
nonlinear relationship between input and output data
(Wardhana et al., 2021). The basic component of the
ANN is the artificial neuron. An artificial neuron is
a mathematical function whose inputs are weighted
separately and their sum is given through a transfer
called weight. The neuron calculates its internal
state by summing the weighted products of the
input vector and a numerical parameter called bias.
This sum is passed through a nonlinear function,
which scales all possible values of the internal state
into the desired output value interval (Lishner and
Shtub, 2022). This process can be represented by the
following in Equation 2 (Fu et al., 2024),

V= ey (WX + b @

where le represents the value of the j neuron in
the [ layer. X/~* represents the value of the i

neuron in the previous layer ( [ — 1). The weight
matrix in the [ layer is expressed as Wilj, while b}
is the corresponding bias value. The sigmoid

activation function is denoted by o.

Gate recurrent unit

The Gated Recurrent Unit (GRU) is a variant
of Recurrent Neural Network (RNN) developed
to overcome the vanishing and exploding gradient
problems that often occur during the training
of conventional RNNs (Fu et al., 2016). The
implementation of unique threshold and state
memory strategies enables GRU to demonstrate
excellent generalization performance in analyzing
and processing time series data. (Yu et al., 2023).

The forward transmission process on GRU is
as follows:

ze = o(Wyxe + Upxi_q) 3)
re = c(Wexy + Uphe_q) (4)
hy = tanh [Wyx; + Up(r:he—1)] (%)
hy =1 —2) Xheq+2z Xh (6)

where are update gate and are reset gate. and
are the input and state information at the current
t-moment. and are weights of the update gate. and
are weights of the reset gate. Tanh is hyperbolic
tangent activation function. are sigmoid activation
function (Wang et al., 2022).

The GRU neural network was developed as an
improvement of RNN to overcome the vanishing
gradient problem, thereby increasing both prediction
accuracy and efficiency in the model training process.
The cell unit in the GRU neural network is designed

@& e
hz—l = * \-l-
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rt Zt
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Figure 3. Internal structure of the Gated Recurrent Unit (GRU), showing the reset gate (r) and update gate (z,) that control
information flow and update the hidden state (h,) for sequential data processing.
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to improve prediction accuracy and computational
efficiency through more optimal update and reset
mechanisms in the gating process (Hua et al., 2024).

The topology of the GRU is shown in Figure
2. While a unidirectional GRU architecture is
able to capture temporal dependencies from past
observations, it is limited in its ability to account
for contextual information from future time steps.
To address this limitation, BIGRU combines the
outputs of two GRU layers that process the sequence
in forward and backward directions (Liu et al., 2024).
The formula for the GRU Bi is shown in the equation

(7) = 9).

R = GRUj,q(x;, he_1) @)
e = GRUpya (x¢, he_p) (8)
he =h, ®h, (9)

Where is the hidden state of the forward and is
the hidden state of the backward GRU layers.
denotes the concatenation operation that combines
both directional outputs into a single feature
representation.

Data preparation

The well data used in this study were obtained
from the open source SEG Wiki in LAS format.
The data comes from a single well (Well 1), which
serves as a training dataset. The well logs used
include checkshot (CHKS), shear wave velocity (Vs),
density (RHOB), gamma ray (GR), compression
wave velocity (Vp), neutron porosity (NPHI), and
water saturation (SW). The log data cover a depth
interval of approximately 3300-7000 ft, as shown in
the curve plot in Figure 3.

Feature selection was performed to identify and
retain the most relevant variables while eliminating
redundant or non-informative features. This process
can improve model accuracy by reducing data
complexity and minimizing the risk of overfitting
(Zainuri et al., 2023).

The machine learning model depends on the
quality of the data used. The presence of missing
values and outliers can certainly affect the model
performance. Therefore, statistical analysis of
the dataset was conducted to ensure validity and
reliability. The statistical characteristics of the well
data are shown in Table 1.
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Figure 4. Plot Curve Well Log Data with shear wave travel time profile (SDT), compressional wave profile (DT:1), gamma
ray profile (GR), neutron porosity profile (NPHI), shear wave velocity profile (Vs).
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Figure 5. Correlation heatmap between log data (NPHI, DT, SDT, RHOB, GR). Colors indicate the strength and direction
of correlation between parameters.

Correlation analysis

Correlation analysis is a statistical method used
to identify collinear relationships among attributes
in a dataset. This approach helps determine which
variables provide significant information to the target
parameter while disregarding less relevant attributes.
Features with high correlation to the target tend to
produce more accurate and reliable models. In this
study, correlation analysis was applied to identify
the most influential log features in predicting shear
wave speed. The relationships between various log
attributes and velocity of shear wave are visualized
in Figure 5.

Data normalization

Before developing a machine learning model,
it is essential to standardize the input data since
different features may have varying scales and unit.
Without normalization, the training process may
become inefficient and fail to converge properly.
The standardization formula used in this study is
expressed as follows:

. g _ .
X _ Xy
scaled — o
]

(10)
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where is the standardized data result; is original
input data at i for feature j; is the mean of feature j;
and is the standard deviation of feature j.

Model evaluation

In this study, the Adam optimization was
employed to accelerate convergence during model
training. Model performance was evaluated using
two key metrics: Mean Absolute Error (MAE) and
Coefficient of Determination ().

The MAE measures the average difference in
the absolute value of the error between the actual
and predicted data while quantifies the proportion
of variance in the observed data explained by the
model. These are formulated as follows:

Z?=1(ni - mi)z

R2 = — (11)
Z?=1(mi —m;)?
n
1
MAE = ;Zmi — (12)
i=1

where m; is the measured value; n; is the
estimated result; x is the sample size; and m; is
the average of the measured value. A good model
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is characterized by a high coefficient R? value,
indicating a strong agreement between prodictions
and actual data, and a low MAE value, indicating
minimal prediction error. Figure 6 shows the
workflow for predicting Vs using the GRU model
based on well log data. The first step is to prepare the
well log data, which includes elastic properties such
as Vp, Vs, and density, as well as supporting logs
such as neutron porosity and gamma ray separated

into target data (Vs) and predictor data. Second,
features with a good correlation with Vs are selected
for input and data normalization is performed.
Third, the data is divided into 60% training data and
40% test data. Fourth, the GRU model is built and
parameters are selected (hyperparameter tuning).
Fifth, the model results are evaluated using MAE;
once the optimal model is obtained, testing is carried
out on a new well (Well 2).

~/ Well Log Data
in Well 1

Target Data (Vs)

Predictor Data

R S

Feature Selection
based on Vs
Correlation

i

Scaling Features

B

Create Bi-GRU
Model

I

Hyperparameter Bi-GRU Model
Tuning Training Process

I

Evaluate Model
(MAE)

J

Is the Model
Performance
Acceptable?

Test Data Well 2 —+ Best Prediction Model

|

:

Predict Vs on Well 2

Figure 6. Workflow for predicting Vs using Bi-GRU model based on well log data.
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RESULT AND DISCUSSION

In the process of developing a machine learning
model to predict shear wave velocity (S-wave
velocity), selecting the right input features is an
important step to improve model accuracy and
understand the relationship among variables. In
this study, the input features used in the machine
learning model to predict log Vs consist of NPHI
(Neutron Porosity Log), RHOB (Bulk Density Log),
and GR (Gamma Ray Log). The selection of these
features is based on the results of the correlation
value of each feature against Vs. Figure 5 shows
the correlation analysis of features such as NPHI,
RHOB, DT, and GR against SDT, with correlation
values of 0.61, -0.67, 0.96, and 0.42, respectively.
The highest correlation is observed between
DT and SDT. Theoretically and empirically, DT
(Sonic Transit Time) or Vp (Compressional Wave
Velocity) is known to have a strong correlation
with Vs. However, in this study, it was attempted
that these features were deliberately not included as
model input, so that there were scenarios with and
without Vp input. This approach was carried out to
evaluate the extent to which other more commonly
available elastic features in well log data can be
used to accurately predict Vs values without relying
on Vp. This strategy is also intended to simulate
field conditions that are often encountered, where
not all wells have complete Vp or DT data. Thus,

if the model is able to produce fairly accurate Vs
predictions using only Neutron porosity log (NPHI),
Bulk density log (RHOB), and Gamma ray log (GR),
this approach can be applied to wells without Vp
data.

Predictions using the empirical Castagna method
and multiple linear regression produced R? values of
0.6254 and 0.6017 (Figure 7). These results indicate
that both methods have limited accuracy in predicting
Vs. The empirical Castagna method has limitations
because the lithology is not always uniform in
each area, decreasing the accuracy. Meanwhile, the
multiple linear regression method without inputting
the compression wave velocity (Vp) produces a low
correlation. This occurs because Vp has a strong
linear relationship with Vs, thus, the absence of Vp
as an input variable causes a significant decrease in
model performance.

For machine learning prediction, hyperparameter
tuning was conducted to determine the best model
configuration. The parameters adjusted include
the number of hidden layers, period, batch size,
and learning rate. These parameters must be in
accordance with the data used to avoid overfitting
and underfitting. In this study, the machine learning
methods used for Vs prediction are ANN and Bi-
GRU. Several hyperparameter variations are carried
out to obtain the best parameters in both methods.

Table 2. Scenarios for hyperparameter tuning in Well 1.

R? R?
Parameter (without MAE (with MAE
(m/s) (m/s)
No  Method Vp) Vp)
Hidden Batch Epoch Activation Learning
layer Size P Function Rate
1 ANN 4 64 500 Relu 0.005 0.8069 48.43 Ogg 16.89
Bi-GRU 4 64 500 Relu 0.005 0.9630 13.07 03; 10.90
2 ANN 5 64 500 Relu 0.005 0.8545 45.74 02? 17.9
Bi-GRU 5 64 500 Relu 0.005 0.9787 9.36 023 11.22
3 ANN 6 128 500 Relu 0.005 0.8164 47.69 Ogg 17.65
Bi-GRU 6 128 500 Relu 0.005 0.9678 11.26 Ozg 16.76
4 ANN 7 128 500 Relu 0.005 0.7904 49.41 0?8 15.87
Bi-GRU 7 128 500 Relu 0.005 0.9520 13.12 02; 11.42
5 Castagna 0.6017 78.44
6 MLR 0.6254 66.99
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Figure 7. The results between actual Vs and predicted results using the (a) Multiple Linear Regression (MLR) method and
(b) Castagna equation. The scatter plots show that both methods exhibit moderate correlation, with MLR providing slightly
higher accuracy (R? = 0.6254, MAE = 66.99 m/s) compared to the Castagna equation (R? = 0.6017, MAE = 78.44 m/s).
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Figure 8. Data distribution of Well 1 and Well 2. The plots show the probability density of selected well log parameters

(DT, GR, NPHI, and RHOB), indicating similar overall trends with slight variations in magnitude and spread between the
two wells.
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Figure 9. Plot Curves Actual vs Prediction Shear Wave with Vp input (a) ANN, (b) Bi-GRU.

Several scenarios are carried out to obtain a good
scenario as in Table 2. Table 2 shows that the Bi-
GRU model outperforms the ANN in all scenarios,
both when using the input of the Vp and without Vp.
This can be seen from the value of the determination
coefficient R? which is consistently higher in each
Bi-GRU configuration. In addition, increasing the
number of hidden layers indicates that the Bi-GRU
model is more stable and has better generalization
capabilities than ANN.

In contrast, the performance of ANN does not
increase significantly with addition of hidden layers,
and even tends to fluctuate, indicating the possibility
of overfitting or architectural limitations. Adding
the Vp attribute to the model input has a significant
positive impact on the performance of both types
of models. For each configuration, the R? value
increases consistently when Vp is used, and the
MAE decreases drastically. For example, the ANN
with 4 hidden layers has an R? of 0.8069 without
Vp and increases to 0.9692 with Vp, accompanied

168 | DOI org/10.29017/scog.v48i3.1797

by a decrease in MAE from 48.43 m/s to 16.89
m/s. The best performance of the Bi-GRU method
is achieved in scenario 2 (Table. 2), with five hidden
layers, a batch size of 64, and a learning rate of
0.005, with an R? value reaching 0.9787 without Vp
and 0.9868 when using Vp, as well as a very low
MAE (9.36 m/s and 11.22 m/s). This hyperparameter
configuration is proven to provide the most optimal
Bi-GRU prediction results in estimating shear wave
velocity (Vs).

For comparison, the empirical Castagna method
for sandstone produced an R? 0f 0.6017 and an MAE
of78.44 m/s, while MLR yields an an R? 0f0.6254 and
an MAE of 66.99 m/s. These results are considerably
lower than those obtained using machine learning,
confirming that data-driven models such as Bi-GRU
and ANN are far superior in capturing the complexity
of the non-linear relationship between well log data
and Vs, compared to traditional linear models such
as MLR and Castagna. Overall, deep learning-based
models, especially Bi-GRU, demonstrate significant
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advantages in predicting shear wave velocity (Vs).
The Bi-GRU architecture, capable of processing
information bidirectionally forward and backward,
enables a better understanding of sequential context

(a) ANN

compared to the ANN model. Although the ANN
model is quite effective, it has limitations in handling
data complexity and generalization capabilities. A
comparison of the Vs prediction results by the two

(b) Bi-GRU
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Figure 10. Plot Curves Actual vs Prediction Shear Wave without Vp input (a) ANN, (b) Bi-GRU.
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Figure 11. Scatter plot of Vs prediction results on Well 2 using the Bi-GRU model. Subplot (a) shows the results without
Vp input (r = 0.7982), while subplot (b) shows the results with Vp input (r = 0.9629). The inclusion of Vp significantly
improves the correlation and prediction accuracy, indicating that compressional velocity contributes valuable information
for estimating shear wave velocity.
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models, both with Vp input and without Vp, is shown
in Figure Figure 9 and Figure 10.

Figure 11 shows the prediction results of the Bi-
GRU model developed and trained using data from
Well 1, then tested to predict the shear wave velocity
(Vs) in Well 2. The distribution of data from each
well can be seen in Figure 8. The model produces a
correlation coefficient value of 0.9548 with Vp input,
and 0.7982 without Vp input. These results indicate
that the model has a fairly good generalization ability
to data from other wells that are not used in the
training process, even though there are differences in
geological or lithological conditions between wells.
Overall, the findings indicate that the Bi-GRU model
is quite robust and has a strong potential to serve as
a basis for Vs prediction in a wider area, while still
acknowledging the inherent limitations of inter-well
generalization.

CONCLUSION

The prediction results of shear wave velocity
(Vs) from various hyperparameter tuning scenarios
show that the Bi-GRU machine learning method
outperforms conventional methods, such as ANN,
Castagna's empirical method for sandstone, and
multiple linear regression. The superiority of Bi-GRU
is reflected in the higher coefficient of determination
(R?) value and the lower mean absolute error (MAE)
value. Specifically, the R? value obtained reaches
0.9787 without using Vp and increases to 0.9868
when Vp is used as input, with MAE 0f 9.36 m/s and
11.22 m/s, respectively. This shows that Bi-GRU has
good stability and generalization capabilities, both
in scenarios with and without Vp input.
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GLOSSARY OF TERMS
Symbol Definition Unit
Vp Velocity of P-wave m/s
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RHOB Rock's Bulk g/cc
Density
NPHI Neutron Porosity %
GR Gamma Ray API
DT Compressional us/ft
Slowness
SDT Shear Slowness us/ft
GRU Gate Recurrent unit
ANN Artificial Neural
Network
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