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ABSTRACT - Shear wave velocity (Vs) is recognized as an important elastic parameter for lithology and 
fluid identification in oil and gas exploration. However, Vs data is not always recorded in well logs. Various 
empirical approaches are often used to estimate Vs, but these methods show limitations in terms of accuracy 
and time efficiency. With technological advances, machine learning has become an effective and efficient 
alternative for predicting Vs from well log data. This study is utilizing the Bi-GRU model, a sophisticated 
artificial neural network specifically designed to process sequential data. This capability makes Bi-GRU 
particularly suitable for predicting log Vs data. Four Bi-GRU modeling scenarios are being developed 
with different hyperparameter configurations and are being compared with ANN models using two input 
variations: with and without Vp data. The results show that scenario 2 (Bi-GRU with five hidden layers, 
batch size 64, learning rate 0.005) is achieve the best performance, with R² values of 0.9787 (without Vp) 
and 0.9868 (with Vp). The MAE values obtained are being recorded as 9.36 (without Vp) and 11.22 (with 
Vp). Compared to shows ANN, MLR, and empirical Castagna methods, the Bi-GRU model show a more 
significant improvement in prediction accuracy. These findings are indicating that Bi-GRU have strong 
potential for accurately and efficiently predicting Vs from well log data.
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INTRODUCTION
Rock elastic parameters, such as compressional 

velocity (Vp), shear velocity (Vs), and density, play 
a crucial role in reservoir characterization because 
they are closely related to rock and fluid properties. 
Shear wave velocity is a major factor in reservoir 
prediction and is widely used to analyze lithology, 
physical characteristics, and to detect and predict the 
presence of fluids in reservoirs (Feng et al., 2024). 

However, shear wave velocity (Vs) data are not 
always available, even in mature wells or newly 
drilled wells. Several factors contribute to this 
limitation, including borehole conditions, restricted 
logging technology, and high acquisition costs 
(Wang et al., 2020). Vs is a key parameter in various 
seismic-based reservoir description processes such 
as prestack seismic inversion, fluid identification, 
and amplitude varioation with offset (AVO) analysis 
(Liu et al., 2023). Consequently, many researchers 
have methods to predict shear wave velocity using 
well log data. 

In general, the methods used for predictiong 
shear wave velocity include empirical equations, rock 
physics modeling, regression-based methods, and 
machine learning approaches (Fu et al., 2024).  The 
empirical approach is a simple method based on the 
characteristics of subsurface lithology. However, its 
dependence on lithology results in reduced accuracy 
when lithology variation occurs. Rock physics 
modelling, while more comprehensive, becomes 
complex when applied to highly heterogeneous 
formations, as it requires accurate quantification 
of pore structures and calibration with extensive 
laboratory data. Machine learning method has 
recently gained considerable attention due to their 
ability to process large datasets and model nonlinear 
relationships between input and target variables. 
This makes them particularly effective for solving 
geophysical interpretation problems (Arya et al., 
2024). In addition, this technology also allows 
reservoir quality assessments to be carried out more 
efficiently in terms of both time and cost (Dixit et 
al., 2020). 

 
 

Figure 1. ANN Structure with an input, hidden, output layer. The input layer receives well log data, the hidden layers 
process nonlinear relationships through neurons and activation functions, and the output layer generates the predicted 

target variable (shear wave velocity, Vs)



161

Machine Learning-Based Prediction of Shear Wave Velocity: Performance Evaluation of Bi-GRU, ANN, 
and The Greenberg-Castagna Empirical Method (Muhammad Raihan Ulil Albab et al.)

DOI org/10.29017/scog.v48i3.1797 |

Advancements in computational efficiency and 
improved prediction accuracy of various machine 
learning (ML) methods in recent years have 
encouraged the widespread application of ML for 
Vs from well log data. Several previous studies, 
such as those conducted by Rajabi et al. (2023), 
Mousavi et al. (2024), Wang et al. (2020), and Fu et 
al. (2024), have successfully applied ML approach 
for Vs prediction.

Building upon these developments, this study 
compares several traditional statistical methods with 
advanced machine learning architectures to predict 
Vs from well log data. Generally, the multiple linear 
(MLR) algorithm is typically used to model linear 
relationships among well log parameters; however, in 
reality, not all variables exhibitlinear dependencies. 
The Artificial Neural Network (ANN) can capture 
nonlinear relationships between variables (Saputro et 
al., 2016); however, ANN is not spesifically designed 
to handle sequntial data with temporal dependencies, 
making it less effective when temporal patterns are 
significant. 

The Bidirectional Gated Recurrent Unit (Bi-
GRU) presents a solution because it is able to capture 
complex nonlinear relationships while utilizing 
temporal information more comprehensively 
(Salehinejad et al., 2017). Therefore, this study 
applies Bi-GRU to predict Vs and compares its 
performance with MLR, ANN, and empirical 
Castagna.

METHODOLOGY

Empirical method of castagna
In this study, the prediction of Vs was 

conducted using the empirical Greenberg-
Castagna relationship. The regression coefficient 
for VS prediction in sandstone based on the 
Greenberg-Castagna relationship are shown as  
follows (Taheri et al., 2022):

Figure 2. The general topology of the gate recurrent unit.

Table 1. Statistics on well data.
 

  DEPTH RHOB GR NPHI DT:1 SDT SW  

 count 801 801 801 801 801 801 801  

 mean 6.600 2388.655 102.801693 0.24252 92.348579 170.461403 0.794285  

 std 115.686
538 0.085091 13.131357 0.039777 4.784305 13.895691 0.251189  

 min 6.400 2.112900 66.140000 0.137 78.975100 139.763500 0.1959  

 max 6.800 2.495600 134.897300 0.3674 108.918800 224.003500 1.432000  

 

GRU GRU

where      is S-wave velocity and       is P-wave 
velocity. 
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Multiple linear regression
Multiple Linear Regression (MLR) is an 

extension of simple linear regression that utilizes 
more than one independent variable to predict the 
dependent variable. This allows MLR to capture 
more complex relationships that may not be 
observable when only a single predictor is used. By 
involving multiple input variables, MLR provides 
more stable and reliable estimates, especially when 
multivariate relationships exist between parameters 
(Akhundi et al., 2014).

Artificial neural network
Artificial Neural Networks (ANNs) (Figure 

1) are layered computational models consisting 
of interconnected processing units called neurons, 
arranged in an input layer, one or more hidden layers, 
and an output layers (Gomaa et al., 2024). ANNs are 
inspired by the structure and function of biological 
neural networks and are designed to model complex, 
nonlinear relationship between input and output data 
(Wardhana et al., 2021). The basic component of the 
ANN is the artificial neuron. An artificial neuron is 
a mathematical function whose inputs are weighted 
separately and their sum is given through a transfer 
called weight. The neuron calculates its internal 
state by summing the weighted products of the 
input vector and a numerical parameter called bias. 
This sum is passed through a nonlinear function, 
which scales all possible values ​​of the internal state 
into the desired output value interval (Lishner and 
Shtub, 2022). This process can be represented by the 
following in Equation 2 (Fu et al., 2024),

Figure 3. Internal structure of the Gated Recurrent Unit (GRU), showing the reset gate (rt) and update gate (zt) that control 
information flow and update the hidden state (ht) for sequential data processing.

 

is the corresponding bias value. The sigmoid 
activation function is denoted by 𝜎.

Gate recurrent unit
 The Gated Recurrent Unit (GRU) is a variant 

of Recurrent Neural Network (RNN) developed 
to overcome the vanishing and exploding gradient 
problems that often occur during the training 
of conventional RNNs (Fu et al., 2016). The 
implementation of unique threshold and state 
memory strategies enables GRU to demonstrate 
excellent generalization performance in analyzing 
and processing time series data. (Yu et al., 2023). 

The forward transmission process on GRU is 
as follows:
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Figure 3. Internal Structure of Gate Recurrent Unit. 
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where  are update gate and  are reset gate.  and 
are the input and state information at the current 
t-moment.  and  are weights of the update gate.  and  
are weights of the reset gate. Tanh is hyperbolic 
tangent activation function.  are sigmoid activation 
function (Wang et al., 2022).

The GRU neural network was developed as an 
improvement of RNN to overcome the vanishing 
gradient problem, thereby increasing both prediction 
accuracy and efficiency in the model training process. 
The cell unit in the GRU neural network is designed 
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to improve prediction accuracy and computational 
efficiency through more optimal update and reset 
mechanisms in the gating process (Hua et al., 2024). 

The topology of the GRU is shown in Figure 
2. While a unidirectional GRU architecture is 
able to capture temporal dependencies from past 
observations, it is limited in its ability to account 
for contextual information from future time steps. 
To address this limitation, BiGRU combines the 
outputs of two GRU layers that process the sequence 
in forward and backward directions (Liu et al., 2024). 
The formula for the GRU Bi is shown in the equation 
(7) – (9).

Data preparation
The well data used in this study were obtained 

from the open source SEG Wiki in LAS format. 
The data comes from a single well (Well 1), which 
serves as a training dataset. The well logs used 
include checkshot (CHKS), shear wave velocity (Vs), 
density (RHOB), gamma ray (GR), compression 
wave velocity (Vp), neutron porosity (NPHI), and 
water saturation (SW). The log data cover a depth 
interval of approximately 3300-7000 ft, as shown in 
the curve plot in Figure 3. 

Feature selection was performed to identify and 
retain the most relevant variables while eliminating 
redundant or non-informative features. This process 
can improve model accuracy by reducing data 
complexity and minimizing the risk of overfitting 
(Zainuri et al., 2023).

The machine learning model depends on the 
quality of the data used. The presence of missing 
values ​​and outliers can certainly affect the model 
performance. Therefore, statistical analysis of 
the dataset was conducted to ensure validity and 
reliability. The statistical characteristics of the well 
data are shown in Table 1.
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Figure 4. Plot Curve Well Log Data with shear wave travel time profile (SDT), compressional wave profile (DT:1), gamma 
ray profile (GR), neutron porosity profile (NPHI), shear wave velocity profile (Vs).

 

Where  is the hidden state of the forward and  is 
the hidden state of the backward GRU layers.  
denotes the concatenation operation that combines 
both directional outputs into a single feature 
representation.
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Figure 5. Correlation heatmap between log data (NPHI, DT, SDT, RHOB, GR). Colors indicate the strength and direction 
of correlation between parameters.

 

Correlation analysis
Correlation analysis is a statistical method used 

to identify collinear relationships among attributes 
in a dataset. This approach helps determine which 
variables provide significant information to the target 
parameter while disregarding less relevant attributes. 
Features with high correlation to the target tend to 
produce more accurate and reliable models. In this 
study, correlation analysis was applied to identify 
the most influential log features in predicting shear 
wave speed. The relationships between various log 
attributes and velocity of shear wave are visualized 
in Figure 5. 

Data normalization 
Before developing a machine learning model, 

it is essential to standardize the input data since 
different features may have varying scales and unit. 
Without normalization, the training process may 
become inefficient and fail to converge properly. 
The standardization formula used in this study is 
expressed as follows:
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where  is the standardized data result;  is original 
input data at i for feature j;  is the mean of feature j; 
and  is the standard deviation of feature j.

Model evaluation
In this study, the Adam optimization was 

employed to accelerate convergence during model 
training. Model performance was evaluated using 
two key metrics: Mean Absolute Error (MAE) and 
Coefficient of Determination (). 

The MAE measures the average difference in 
the absolute value of the error between the actual 
and predicted data while  quantifies the proportion 
of variance in the observed data explained by the 
model. These are formulated as follows:
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training. Model performance was evaluated using 
two key metrics: Mean Absolute Error (MAE) and 
Coefficient of Determination (𝑅𝑅2).  

The MAE measures the average difference in 
the absolute value of the error between the actual 
and predicted data while 𝑅𝑅2 quantifies the 
proportion of variance in the observed data 
explained by the model. These are formulated as 
follows: 
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where 𝑚𝑚𝑖𝑖 is the measured value; 𝑛𝑛𝑖𝑖 is the 
estimated result; x is the sample size;  and 𝑚̅𝑚𝑖𝑖 is 
the average of the measured value. A good model 
is characterized by a high coefficient R² value, 
indicating a strong agreement between prodictions 
and actual data, and a low MAE value, indicating 
minimal prediction error. 

Figure 6 shows the workflow for predicting Vs 
using the GRU model based on well log data. The 
first step is to prepare the well log data, which 
includes elastic properties such as Vp, Vs, and 
density, as well as supporting logs such as neutron 
porosity and gamma ray separated into target data 
(Vs) and predictor data. Second, features with a 

Figure 6. Workflow for Predicting Vs Using Bi-GRU Model Based on Well Log Data. 
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is characterized by a high coefficient R² value, 
indicating a strong agreement between prodictions 
and actual data, and a low MAE value, indicating 
minimal prediction error. Figure 6 shows the 
workflow for predicting Vs using the GRU model 
based on well log data. The first step is to prepare the 
well log data, which includes elastic properties such 
as Vp, Vs, and density, as well as supporting logs 
such as neutron porosity and gamma ray separated 

into target data (Vs) and predictor data. Second, 
features with a good correlation with Vs are selected 
for input and data normalization is performed. 
Third, the data is divided into 60% training data and 
40% test data. Fourth, the GRU model is built and 
parameters are selected (hyperparameter tuning). 
Fifth, the model results are evaluated using MAE; 
once the optimal model is obtained, testing is carried 
out on a new well (Well 2).	

Figure 6. Workflow for predicting Vs using Bi-GRU model based on well log data.
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RESULT AND DISCUSSION
In the process of developing a machine learning 

model to predict shear wave velocity (S-wave 
velocity), selecting the right input features is an 
important step to improve model accuracy and 
understand the relationship among variables. In 
this study, the input features used in the machine 
learning model to predict log Vs consist of NPHI 
(Neutron Porosity Log), RHOB (Bulk Density Log), 
and GR (Gamma Ray Log). The selection of these 
features is based on the results of the correlation 
value of each feature against Vs. Figure 5 shows 
the correlation analysis of features such as NPHI, 
RHOB, DT, and GR against SDT, with correlation 
values ​​of 0.61, -0.67, 0.96, and 0.42, respectively. 
The highest correlation is observed between 
DT and SDT. Theoretically and empirically, DT 
(Sonic Transit Time) or Vp (Compressional Wave 
Velocity) is known to have a strong correlation 
with Vs. However, in this study, it was attempted 
that these features were deliberately not included as 
model input, so that there were scenarios with and 
without Vp input. This approach was carried out to 
evaluate the extent to which other more commonly 
available elastic features in well log data can be 
used to accurately predict Vs values ​​without relying 
on Vp. This strategy is also intended to simulate 
field conditions that are often encountered, where 
not all wells have complete Vp or DT data. Thus, 

if the model is able to produce fairly accurate Vs 
predictions using only Neutron porosity log (NPHI), 
Bulk density log (RHOB), and Gamma ray log (GR), 
this approach can be applied to wells without Vp 
data.

Predictions using the empirical Castagna method 
and multiple linear regression produced R² values ​​of 
0.6254 and 0.6017 (Figure 7). These results indicate 
that both methods have limited accuracy in predicting 
Vs. The empirical Castagna method has limitations 
because the lithology is not always uniform in 
each area, decreasing the accuracy. Meanwhile, the 
multiple linear regression method without inputting 
the compression wave velocity (Vp) produces a low 
correlation. This occurs because Vp has a strong 
linear relationship with Vs, thus, the absence of Vp 
as an input variable causes a significant decrease in 
model performance.

For machine learning prediction, hyperparameter 
tuning was conducted to determine the best model 
configuration. The parameters adjusted include 
the number of hidden layers, period, batch size, 
and learning rate. These parameters must be in 
accordance with the data used to avoid overfitting 
and underfitting. In this study, the machine learning 
methods used for Vs prediction are ANN and Bi-
GRU. Several hyperparameter variations are carried 
out to obtain the best parameters in both methods. 

Table 2. Scenarios for hyperparameter tuning in Well 1.

 
 

 

No Method 
Parameter 

R² 
(without 

Vp) 
MAE 
(m/s)

R²  
(with 

Vp)
MAE 
(m/s)

 

 Hidden 
layer 

Batch 
Size Epoch Activation 

Function
Learning 

Rate 
 

 1 ANN 4 64 500 Relu 0.005 0.8069 48.43 0.96
92 16.89  

  Bi-GRU 4 64 500 Relu 0.005 0.9630 13.07 0.97
72 10.90  

 2 ANN 5 64 500 Relu 0.005 0.8545 45.74 0.97
61 17.9  

  Bi-GRU 5 64 500 Relu 0.005 0.9787 9.36 0.98
68 11.22  

 3 ANN 6 128 500 Relu 0.005 0.8164 47.69 0.96
97 17.65  

  Bi-GRU 6 128 500 Relu 0.005 0.9678 11.26 0.96
58 16.76  

 4 ANN 7 128 500 Relu 0.005 0.7904 49.41 0.96
19 15.87  

  Bi-GRU 7 128 500 Relu 0.005 0.9520 13.12 0.97
32 11.42  

 5 Castagna  0.6017 78.44  

 6 MLR  0.6254 66.99  
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Figure 7. The results between actual Vs and predicted results using the (a) Multiple Linear Regression (MLR) method and 
(b) Castagna equation. The scatter plots show that both methods exhibit moderate correlation, with MLR providing slightly 
higher accuracy (R² = 0.6254, MAE = 66.99 m/s) compared to the Castagna equation (R² = 0.6017, MAE = 78.44 m/s).

 

Figure 8. Data distribution of Well 1 and Well 2. The plots show the probability density of selected well log parameters 
(DT, GR, NPHI, and RHOB), indicating similar overall trends with slight variations in magnitude and spread between the 

two wells.
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Several scenarios are carried out to obtain a good 
scenario as in Table 2. Table 2 shows that the Bi-
GRU model outperforms the ANN in all scenarios, 
both when using the input of the Vp and without Vp. 
This can be seen from the value of the determination 
coefficient R² which is consistently higher in each 
Bi-GRU configuration. In addition, increasing the 
number of hidden layers indicates that the Bi-GRU 
model is more stable and has better generalization 
capabilities than ANN. 

In contrast, the performance of ANN does not 
increase significantly with addition of hidden layers, 
and even tends to fluctuate, indicating the possibility 
of overfitting or architectural limitations. Adding 
the Vp attribute to the model input has a significant 
positive impact on the performance of both types 
of models. For each configuration, the R² value 
increases consistently when Vp is used, and the 
MAE decreases drastically. For example, the ANN 
with 4 hidden layers has an R² of 0.8069 without 
Vp and increases to 0.9692 with Vp, accompanied 

Figure 9.  Plot Curves Actual vs Prediction Shear Wave with Vp input (a) ANN, (b) Bi-GRU.

 

by a decrease in MAE from  48.43 m/s to 16.89 
m/s. The best performance of the Bi-GRU method 
is achieved in scenario 2 (Table. 2), with five hidden 
layers, a batch size of 64, and a learning rate of 
0.005, with an R² value reaching 0.9787 without Vp 
and 0.9868 when using Vp, as well as  a very low 
MAE (9.36 m/s and 11.22 m/s). This hyperparameter 
configuration is proven to provide the most optimal 
Bi-GRU prediction results in estimating shear wave 
velocity (Vs). 

For comparison, the empirical Castagna method 
for sandstone produced an R² of 0.6017 and an MAE 
of 78.44 m/s, while MLR yields an an R² of 0.6254 and 
an MAE of 66.99 m/s. These results are considerably 
lower than those obtained using machine learning, 
confirming that data-driven models such as Bi-GRU 
and ANN are far superior in capturing the complexity 
of the non-linear relationship between well log data 
and Vs, compared to traditional linear models such 
as MLR and Castagna. Overall, deep learning-based 
models, especially Bi-GRU, demonstrate significant 
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Figure 10. Plot Curves Actual vs Prediction Shear Wave without Vp input (a) ANN, (b) Bi-GRU.

 

Figure 11. Scatter plot of Vs prediction results on Well 2 using the Bi-GRU model. Subplot (a) shows the results without 
Vp input (r = 0.7982), while subplot (b) shows the results with Vp input (r = 0.9629). The inclusion of Vp significantly 
improves the correlation and prediction accuracy, indicating that compressional velocity contributes valuable information 

for estimating shear wave velocity.

 

advantages in predicting shear wave velocity (Vs). 
The Bi-GRU architecture, capable of processing 
information bidirectionally forward and backward, 
enables a better understanding of sequential context 

compared to the ANN model. Although the ANN 
model is quite effective, it has limitations in handling 
data complexity and generalization capabilities. A 
comparison of the Vs prediction results by the two 
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models, both with Vp input and without Vp, is shown 
in Figure Figure 9 and Figure 10.

Figure 11 shows the prediction results of the Bi-
GRU model developed and trained using data from 
Well 1, then tested to predict the shear wave velocity 
(Vs) in Well 2. The distribution of data from each 
well can be seen in Figure 8. The model produces a 
correlation coefficient value of 0.9548 with Vp input, 
and 0.7982 without Vp input. These results indicate 
that the model has a fairly good generalization ability 
to data from other wells that are not used in the 
training process, even though there are differences in 
geological or lithological conditions between wells. 
Overall, the findings indicate that the Bi-GRU model 
is quite robust and has a strong potential to serve as 
a basis for Vs prediction in a wider area, while still 
acknowledging the inherent limitations of inter-well 
generalization.

CONCLUSION
The prediction results of shear wave velocity 

(Vs) from various hyperparameter tuning scenarios 
show that the Bi-GRU machine learning method 
outperforms conventional methods, such as ANN, 
Castagna's empirical method for sandstone, and 
multiple linear regression. The superiority of Bi-GRU 
is reflected in the higher coefficient of determination 
(R²) value and the lower mean absolute error (MAE) 
value. Specifically, the R² value obtained reaches 
0.9787 without using Vp and increases to 0.9868 
when Vp is used as input, with MAE of 9.36 m/s and 
11.22 m/s, respectively. This shows that Bi-GRU has 
good stability and generalization capabilities, both 
in scenarios with and without Vp input.
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GLOSSARY OF TERMS 

 Symbol Definition Unit  

 Vp Velocity of P-wave m/s
 Vs Velocity of S-wave m/s
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Density
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 NPHI Neutron Porosity %
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 GRU Gate Recurrent unit  

 ANN Artificial Neural 
Network
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