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ABSTRACT - Reservoir simulation requires solving large, sparse systems of nonlinear equations, where 
iterative Krylov subspace solvers such as the conjugate gradient (CG), stabilized biconjugate gradient (BiCG-
STAB), and generalized minimal residual (GMRES) are widely applied. However, these methods often have 
limitations in terms of their stability and accuracy in nonlinear systems. This paper introduces a hybrid 
probabilistic backpropagation neural network (Prob-BPNN) solver that integrates neural-network-based 
initialization with probabilistic inference to improve robustness. The solver was benchmarked against CG, 
BiCG-STAB, and GMRES using two synthetic reservoir models with the GMRES solution at a tolerance of 
10-10, serving as the reference solution. The results show that Prob-BPNN consistently achieved production 
profiles closely matching the reference solution, with errors of MAE ≤ 0.066, RMSE ≤ 0.071, MAPE 
≤ 2.04%, and R2 ≥ 0.945. In contrast, CG and BiCG-STAB produced unstable and nonphysical results, 
with errors exceeding 292% and negative R2 values. In terms of computational performance, Prob-BPNN 
required 9.96 s in Case 1 and 45.90 s in Case 2, compared to 2.85 s and 1.53 s for GMRES, respectively. 
Although more computationally expensive, Prob-BPNN delivered convergence on the same residual order 
of magnitude (below 10-3) as GMRES while avoiding the severe instabilities observed in CG and BiCG-
STAB. These findings indicate that the Prob-BPNN is preferable in applications where solver robustness 
and accuracy are critical, even at the expense of a higher execution time. Future research should focus 
on reducing computational overhead through parallelization and hybridization strategies to enhance the 
scalability of large-scale reservoir models.
Keywords: nonlinear solver, probabilistic, neural networks, backpropagation, reservoir simulation.
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INTRODUCTION
Reservoir simulation is a method used in 

reservoir engineering to quantitatively predict the 
dynamic behavior and transport of multiphase fluids 
within porous media over time. It can provide reliable 
forecasts of reservoir performance, as the primary 
function of a simulator is to predict reservoir behavior 
under a variety of operating scenarios (Habib & 
Joslin 2020; Kristanto et al., 2025; Mithani et al., 
2022; Sugihardjo, 2022; Swadesi et al., 2025; Yan 
et al., 2025). The workflow for obtaining solutions 
in the reservoir simulator is shown in Figure 1. The 
main challenge in reservoir simulations is solving a 
large, sparse system of nonlinear algebraic equations 
that result from discretizing the governing partial 
differential equations (PDEs) for fluid flow (Alpak 
et al., 2023; Chen et al., 2022; Jammoul et al., 2023). 
Therefore, research on nonlinear solvers for reservoir 
simulations is being conducted to develop robust and 
efficient methods.

Review of existing solvers for reservoir 
simulation

Nonlinear solvers are generally categorized into 
two main types: direct and iterative. Direct solvers 
aim to obtain an exact solution in a finite number of 
operations and are typically robust and independent 
of initial guesses (Duran & Tuncel 2014; Yang et al., 
2025). However, they are computationally expensive 
and have high memory demands owing to matrix 
factorization and fill-in effects, particularly when 
applied to large sparse systems. By contrast, iterative 
solvers generate a sequence of approximations 
that gradually converge to the desired solution and 
generally require less memory than direct solvers. 
Consequently, the solution of equations in reservoir 
simulators is typically carried out using iterative 
solvers such as the conjugate gradient (CG), 
stabilized biconjugate gradient (BiCG-STAB), and 
generalized minimal residual (GMRES).

The CG  method (Hestenes & Stiefel 1952) 
is typically applied to the pressure equation in 
two-phase (oil-water or gas-water) models solved 
sequentially (e.g., Implicit Pressure, Explicit 
Saturation). The CG only requires the storage of 
a few vectors, which is a significant advantage for 
large problems in which memory is a constraint. 
In addition, CG often converges quickly in well-
conditioned problems. The main drawback of the CG 
is its strict requirements for symmetric and positive-
definite matrices. This is often not the case in fully 
implicit models, which result in highly nonsymmetric 

Jacobian matrices owing to the strong coupling 
between variables such as pressure, saturation, and 
composition (Gharieb et al., 2024; Jiang & Pan 2022; 
Tokuda & Hashimoto 2023). 

Unlike CG, BiCG-STAB (van der Vorst 1992) is 
designed to handle nonsymmetric matrices that arise 
from fully implicit formulations. BiCG-STAB also 
requires the storage of a limited number of vectors, 
making it memory-efficient for large problems. The 
“stabilized” part of its name refers to its ability to 
smooth out the erratic convergence behavior often 
seen in other biconjugate gradient-based methods. 
However, the performance of BiCG-STAB is highly 
dependent on the quality of the preconditioner (Benzi 
2002; Benzi & Tûma 1999).

GMRES (Saad & Schultz 1986) determines an 
approximate solution by minimizing the residual 
norm over a subspace. This minimizes the residual 
at each step, guaranteeing a monotonic decrease 
in the residual norm. The GMRES is particularly 
effective in solving linear systems from fully 
implicit formulations because it results in highly 
nonsymmetric Jacobian matrices. 

However, GMRES has issues related to memory 
consumption and computational load. The high 
memory consumption is because this algorithm 
requires storage of the basis of the Krylov subspace, 
which grows at each iteration (Aliaga et al., 2023; 
Zhao et al., 2022). The computational cost is high 
because the orthogonalization process at each step of 
the Arnoldi iteration is computationally expensive, 
which adds to the overall cost of the solver (He et 
al., 2016).

Review of advances research in nonlinear 
solvers 

Bakhvalov (1966) introduced multi-grid methods 
that use a hierarchy of grids to solve a linear system. 
This method works by smoothing the high-frequency 
error components on a fine grid and then solving 
the remaining low-frequency error components on 
a coarser grid, where the problem is smaller and 
cheaper to solve. This process is repeated across 
multiple coarsening levels. The main advantage 
of this method is its numerical stability because its 
computational work scales linearly with the number 
of unknowns. However, the implementation of the 
multigrid method is challenging because it requires 
significant effort to tune an effective coarsening 
strategy and intergrid transfer operators for complex 
geology (Stüben et al., 2007). While highly effective 
for the elliptic pressure equation, it is less suited 
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Figure 1. Typical workflow of a reservoir simulator for solving nonlinear equations.

 

for the hyperbolic-dominated transport equations 
for saturation and concentration (Hørsholt et al., 
2019). Because Newton-based methods require 
the assembly of both the Jacobian and residual for 
a fully coupled system of equations, an operator-
based linearization (OBL) approach was introduced. 
In this algorithm, the discretized mass and energy 
conservation equations are reformulated into an 
operator form that clearly distinguishes between 
the spatially dependent components and the state-
dependent properties of the governing equations 
(Asif et al., 2025; Khait & Voskov 2017). However, 
the OBL exhibits a decline in performance in cases 
with very high nonlinearity, such as in combinations 

of cAmerican petroleum institute llarity, gravity, and 
multiphase flow (Li & Abushaikha 2022).

In addition, several studies have focused on 
solvers that can be used in parallel frameworks. 
Bhogeswara and Killough (1994) introduced a 
hybrid numerical approach combining domain 
decomposition and multigrid techniques to 
efficiently solve large, sparse linear systems in 
reservoir simulations on both sequential and parallel 
computers. Manea et al. (2016) presented a parallel 
algebraic multiscale (AMS) solver for the pressure 
equation in heterogeneous reservoir models, 
formulated as a two-level domain decomposition 
algorithm with a localization assumption, and 
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implemented a scalable AMS on multicore and 
many-core architectures. Kang et al. (2018) proposed 
a parallel method using OpenACC to accelerate serial 
code and ease GPU porting, combined with GPU-
aided domain decomposition to enhance reservoir 
simulation efficiency. In their studies, the GPU-aided 
approach outperformed the CPU-based version by 
up to two times while reducing code modification to 
approximately 22% with OpenACC. Furthermore, 
domain decomposition boosts the execution 
efficiency by up to 1.7 times. Gasparini et al. (2021) 
utilized a hybrid OpenMP/MPI programming model 
with a two-level hierarchical data structure that was 
efficiently mapped onto OpenMP threads and MPI 
processes.

Review of neural networks for reservoir 
simulation

Artificial neural networks (ANN) are widely used 
in proxy modeling for reservoir simulations, but their 
roles differ from those of nonlinear solvers. A proxy 
model serves as a surrogate or approximation for a 
full-physics reservoir simulator. Instead of directly 
solving a large system of nonlinear partial differential 
equations that describe multiphase flow in porous 
media, the ANN was trained on input–output data 
generated from a set of precomputed simulations. 
Once trained, an ANN can quickly predict reservoir 
responses, such as production rates, pressure, or 
saturation profiles, under new operating conditions 
(Zubarev 2009). Kim et al. (2017) integrated a deep 
neural network (DNN) with a stacked autoencoder 
(SAE) for multi-objective history matching modeling 
applications. Isaiah et al. (2013) combined an ANN 
with the Kriging geostatistical algorithm to predict 
porosity and permeability, and then applied it to 
address the challenges of reservoir simulation in 
mature fields with sparse and outdated data. 

Mamo & Dennis (2020) used a nonlinear 
autoregressive network with an external input 
(NARX) structure as a prediction model and found 
that the Bayesian regularization algorithm was the 
most suitable for training the model. This is because 
Bayesian regularization can generalize datasets 
with noise and prevent overfitting; however, it 
requires a longer computation time. (Alakeely & 
Horne 2022) examined the use of generative deep 
learning, specifically a variational autoencoder 
(VAE), as a proxy for simulating oil and water 
production profiles. The VAE was trained to map 
temporal and spatial inputs to a series of production 
rate data over time, and the results showed that the 

VAE significantly outperformed machine learning 
architectures in predicting production flow rates at 
unseen locations.

Despite rAmerican petroleum institute d 
progress, the proxy model approach faces several 
challenges. Proxy models are considered black boxes 
because they do not incorporate the physical meaning 
of a dataset, resulting in predictions that may be 
physically inconsistent (Karniadakis et al., 2021). 
Second, the proxy models may not be sufficiently 
robust to make long-term predictions. This is because 
the proxy models are only applied to the training 
dataset interval (Almajid & Abu-Al-Saud 2022).

Another neural network method that has 
recently been used in reservoir modeling is the 
physics-informed neural network (PINN), which 
was first introduced by (Raissi et al., 2019). The 
PINN algorithm integrates the data, boundary 
conditions, and initial conditions expressed in the 
form of partial differential equations to construct 
a function loss equation. (Gasmi & Tchelepi 2021) 
showed that the PINN could be used to solve fluid 
flow equations in synthetic reservoir models with an 
accuracy comparable to that of classical numerical 
methods. One of its advantages is that PINN can 
infer unknown parameters, such as permeability and 
porosity, with limited pressure data. Furthermore, 
(Gasmi & Tchelepi 2022) introduced the concept 
of parameterized PINN (P-PINN), which is a PINN 
architecture that uses random parameters, such as 
stochastic permeability distributions, as inputs. 
(Zhang et al., 2024) applied a PINN to the Buckley-
Leverett problem and demonstrated that it can 
capture the evolution of the saturation front, even 
under heterogeneous conditions with sharp gradients.

The challenge in the application of PINN 
in reservoir models is their scalability. Field-
scale reservoir models render PINN training 
computationally cumbersome. The significant 
differences between the dynamics around the well 
and areas far from the well could disrupt the training 
stability and thus slow convergence (Han et al., 
2023). Moreover, the PINN generates computational 
complexity because training the PINN on models 
with millions of grid cells requires the evaluation of 
a massive number of residuals, which is still very 
difficult to accommodate even with GPU acceleration 
(Gasmi & Tchelepi 2022). 

This study introduces a novel nonlinear solver 
that combines backpropagation neural networks 
(BPNN) with a probabilistic approach rather than 
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physics-informed neural networks (PINNs). The 
proposed method is more readily integrated into 
existing reservoir simulators, whereas PINNs, 
despite their accuracy, typically involve substantially 
higher computational demands, even when applied 
to relatively simple synthetic models.

	 METHODOLOGY

Simulation framework
The computational framework for this study 

integrates two main platforms: the MATLAB 
Reservoir Simulation Toolbox (MRST) and Python. 
MRST, developed by SINTEF Digital (Lie 2019), 
served as the reservoir simulation environment. Its 
open-source and modular design makes it particularly 
suitable for research purposes, as it allows for the 
seamless incorporation of prototype methods and 
numerical experiments. During the simulation run, 
MRST formulates a system of nonlinear equations 
arising from the discretization of the governing flow 
equations. Instead of solving these equations using 
their default solvers, MRST is conFigured to call an 
external Python function containing the proposed 
solver algorithm. This setup ensures that the Python-
based solver is directly embedded within the MRST 
simulation workflow. MRST provides the system 
matrices and residuals, whereas Python executes the 
solver computations and returns the solution to the 
MRST for the subsequent simulation steps.

Hybrid probabilistic – backpropagation neural 
network solver (Prob-BPNN)

A complete explanation of the technique for 
solving nonlinear systems using a backpropagation 
neural network (BPNN) can be found in Goulianas 
et al. (2018). This technique works by constructing 
a neural network that is a direct structural mirror 
of a system of equations that must be solved. 
The output neurons are specifically designed to 
calculate the value of each equation in the system. In 
summary, four layers are involved in the feedforward 
neural network architecture, with each layer as 
follows: 1). Layer 0 (input): A single input neuron 
that always has a value of one; 2). Layer 1 (the 
solution vector) contains n neurons, where n is the 
number of variables in the system (x1,x2,…,xn). The 
synaptic weights connecting layers 0 to 1 were the 
only variable weights in the entire network. After 
successful training, the values of these weights 
become components of the system root; 3). Layer 2 
(term calculation): This layer comprises specialized 

neurons that calculate each multiplicative term. 
The weights connecting layers 1 and 2 are fixed 
and correspond to the exponents in each term of the 
equations; 4). Layer 3 (output) contained n output 
neurons, one for each system equation. Each neuron 
sums the terms calculated in layer 2 to reconstruct 
its corresponding polynomial equation. The weights 
connecting layers 2 and 3 are also fixed, and represent 
the coefficient terms.

For a given phase (e.g., oil, gas, and water) in a 
specific grid cell i, the residual equation, Ri, at a new 
time level, n+1, is written as 
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The accumulation and flux terms are represented 
by the main structure of the network, whereas the 
source/sink terms correspond to a fixed bias in the 
BPNN. We use the identity function as an activation 
function and an adaptive learning rate, β, defined as:
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Probabilistic linear solvers (Wenger & Hennig 
2020) reformulate the solution for linear systems as 
a Bayesian inference problem. Unlike conventional 
deterministic solvers that provide a single-point 
estimate, probabilistic solvers yield a probability 
distribution over the solution space. 

Suppose we have a task of solving nonlinear 
equations:

(3)

 
 
𝑅𝑅� � �𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� � �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�

� ��𝑐𝑐𝑐𝑐�𝑐𝑐�𝛿�𝛿�𝑐𝑐𝑐𝑐𝑘𝑘�
� � 

(1)

 
 

𝛽𝛽�𝑘𝑘� � 2
∑ �𝜕𝜕𝜕𝜕�

��𝑥𝑥�
𝜕𝜕𝜕𝜕� �

�
����

 
(2)

 
 

𝑓𝑓�𝑥𝑥� � �,𝛿𝛿𝛿𝑓𝑓: ℝ� → ℝ� (3)
 

 
𝑓𝑓�𝑥𝑥� � 𝛿𝛿� � 𝑓𝑓�𝑥𝑥�� � 𝐽𝐽�𝑥𝑥��𝛿𝛿 (4)

 
 

𝐽𝐽�𝑥𝑥��𝛿𝛿 � �𝑓𝑓�𝐹𝐹�� (5)
 

 
𝛿𝛿𝛿�����, ∑��𝛿𝛿 (6)

 
 
𝑝𝑝�𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿� � ����, ∑��  (7)

 
 
 

𝑥𝑥��� � 𝐹𝐹� � �� (8)
 

 
�tr�Cov�𝒙𝒙�� � �𝛿��𝛿𝛿����‖𝒃𝒃‖�, 𝛿𝛿����� (9)

 
 
 
 
 

(4)

 
 
𝑅𝑅� � �𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� � �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�

� ��𝑐𝑐𝑐𝑐�𝑐𝑐�𝛿�𝛿�𝑐𝑐𝑐𝑐𝑘𝑘�
� � 

(1)

 
 

𝛽𝛽�𝑘𝑘� � 2
∑ �𝜕𝜕𝜕𝜕�

��𝑥𝑥�
𝜕𝜕𝜕𝜕� �

�
����

 
(2)

 
 

𝑓𝑓�𝑥𝑥� � �,𝛿𝛿𝛿𝑓𝑓: ℝ� → ℝ� (3)
 

 
𝑓𝑓�𝑥𝑥� � 𝛿𝛿� � 𝑓𝑓�𝑥𝑥�� � 𝐽𝐽�𝑥𝑥��𝛿𝛿 (4)

 
 

𝐽𝐽�𝑥𝑥��𝛿𝛿 � �𝑓𝑓�𝐹𝐹�� (5)
 

 
𝛿𝛿𝛿�����, ∑��𝛿𝛿 (6)

 
 
𝑝𝑝�𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿� � ����, ∑��  (7)

 
 
 

𝑥𝑥��� � 𝐹𝐹� � �� (8)
 

 
�tr�Cov�𝒙𝒙�� � �𝛿��𝛿𝛿����‖𝒃𝒃‖�, 𝛿𝛿����� (9)

 
 
 
 
 

At iteration k, the nonlinear function is 
approximated using a first-order Taylor expansion, 
as follows:
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transforms the nonlinear problem into a local 
linear system, as follow: 
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Instead of solving the linear system exactly, a 
probabilistic model is imposed:

(5)
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where μ0 and ∑0 encode prior belief about the 
solution update. After observing the matrix vector 
products, for example J(xk)v, Bayesian updating 
yields a posterior:
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The mean μk acts as the solution update, while 
∑k quantifies uncertainty. Subsequently, the iteration 
is obtained as

(9)

 
 
𝑅𝑅� � �𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� � �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�

� ��𝑐𝑐𝑐𝑐�𝑐𝑐�𝛿�𝛿�𝑐𝑐𝑐𝑐𝑘𝑘�
� � 

(1)

 
 

𝛽𝛽�𝑘𝑘� � 2
∑ �𝜕𝜕𝜕𝜕�

��𝑥𝑥�
𝜕𝜕𝜕𝜕� �

�
����

 
(2)

 
 

𝑓𝑓�𝑥𝑥� � �,𝛿𝛿𝛿𝑓𝑓: ℝ� → ℝ� (3)
 

 
𝑓𝑓�𝑥𝑥� � 𝛿𝛿� � 𝑓𝑓�𝑥𝑥�� � 𝐽𝐽�𝑥𝑥��𝛿𝛿 (4)

 
 

𝐽𝐽�𝑥𝑥��𝛿𝛿 � �𝑓𝑓�𝐹𝐹�� (5)
 

 
𝛿𝛿𝛿�����, ∑��𝛿𝛿 (6)

 
 
𝑝𝑝�𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿� � ����, ∑��  (7)

 
 
 

𝑥𝑥��� � 𝐹𝐹� � �� (8)
 

 
�tr�Cov�𝒙𝒙�� � �𝛿��𝛿𝛿����‖𝒃𝒃‖�, 𝛿𝛿����� (9)

 
 
 
 
 

 
 
𝑅𝑅� � �𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� � �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�

� ��𝑐𝑐𝑐𝑐�𝑐𝑐�𝛿�𝛿�𝑐𝑐𝑐𝑐𝑘𝑘�
� � 

(1)

 
 

𝛽𝛽�𝑘𝑘� � 2
∑ �𝜕𝜕𝜕𝜕�

��𝑥𝑥�
𝜕𝜕𝜕𝜕� �

�
����

 
(2)

 
 

𝑓𝑓�𝑥𝑥� � �,𝛿𝛿𝛿𝑓𝑓: ℝ� → ℝ� (3)
 

 
𝑓𝑓�𝑥𝑥� � 𝛿𝛿� � 𝑓𝑓�𝑥𝑥�� � 𝐽𝐽�𝑥𝑥��𝛿𝛿 (4)

 
 

𝐽𝐽�𝑥𝑥��𝛿𝛿 � �𝑓𝑓�𝐹𝐹�� (5)
 

 
𝛿𝛿𝛿�����, ∑��𝛿𝛿 (6)

 
 
𝑝𝑝�𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿� � ����, ∑��  (7)

 
 
 

𝑥𝑥��� � 𝐹𝐹� � �� (8)
 

 
�tr�Cov�𝒙𝒙�� � �𝛿��𝛿𝛿����‖𝒃𝒃‖�, 𝛿𝛿����� (9)

 
 
 
 
 

(8)

In this study, we used a BPNN to make an initial 
guess for the probabilistic solver. The workflow of 
the hybrid probabilistic-backpropagation neural 
network (Prob-BPNN) solver is shown in Figure 2, 
and can be explained as follows: 1). Take as input: 
the matrix-vector multiplication operator A(.), the 
vector b, and optionally a prior distribution for A and 
its inverse H; 2). Make an initial guess x0:  The value 
is calculated using the BPNN approach; 3). Calculate 
the residual norm, r0: The residual measures the error 
level of the current solution, i.e., how far Ax₀ is from 
the target b.

Steps 4 through 10 are iterative procedures until 
satisfy the solution criteria: 

4). Compute action or search direction via 
policy, si: This direction is calculated by applying the 
expectation of the inverse matrix E[H] to the negative 
of the previous residual rᵢ₋₁; 5). Make observations, 
yi: This process applies matrix A in the direction of 
search si; 6). Calculate the optimal step size, αi: This 
process determines how far to move along the search 
direction sᵢ; 7). Update the solution estimate, xi: The 
estimate of xᵢ₋₁ is moved by αᵢ toward the search for 

sᵢ to obtain a new, better estimate, xᵢ. 8). Update the 
residual, ri: This is a more computationally efficient 
way to obtain the new residual rᵢ without recalculating 
Axᵢ-b; 9). Infer posterior distributions: This process 
uses the collected information to infer new posterior 
distributions for the matrix A and its inverse H; 10). 
Calibrate the uncertainty: This process uses all search 
directions (S) and observation results (Y) that have 
been collected to adjust uncertainties (Φ,Ψ).

After the iteration stops, this solver defines the 
final confidence about the solution x. 

 

	 RESULTS AND DISCUSSION
In this study, we evaluated the performance of the 

solver using two reservoir geometry models, namely, 
Cases 1 and 2, as shown in Figure 3. Case 1 had 
dimensions of 200, 200, and 50 m in the x-, y-, and 
z-directions, respectively, with a grid configuration 
of 5 × 4 × 5, resulting in 100 cells (Figure 3a). 
It consisted of five vertical layers, each 10 m in 
thickness. In the x-direction, local grid refinement 
was applied at x = 100 m with a thickness of 0.001 
m to represent the fracture. The fracture grids are 
characterized by a porosity of 0.99 and a permeability 
of 5000 mD, whereas the surrounding matrix grids 
have a porosity of 0.05 and a permeability of 0.1 mD. 
A single vertical production well (P1) was located 
at the edge of the model, extending from a depth of 
0 to 30 m. 

In Case 2, we used an unstructured grid 
with a  configuration of 6 × 6 × 5 (Figure 3b). A 
homogeneous reservoir model was employed with 
uniform rock properties throughout the domain, 
including a permeability of 30 mD and porosity of 
0.3. In both cases, we used a single-phase oil system 
with a density of 750 kg/m3 and a viscosity of 5 cp. 
The properties of the Jacobian matrix resulting from 
both cases are listed in Table 1. 

Table 1. Properties of the Jacobian matrix 

 
 Case 1 Case 3

 

 Matrix size 102  102 182  182  
 Number of elements 10,404 33,404  
 Number of nonzero 

elements 
579 1327

 

 Condition number 2.3  108 2.8  108  
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 Figure 2. Workflow for solving nonlinear sytems in reservoir simulation using hybrid probabilistic-backpropagation neural 
network (Prob-BPNN) solver.
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Figure 3. Model geometries for (a). Case 1 and (b). Case 2.
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Simulation results
Figure 4 presents the oil production rate profiles 

for Case 1, comparing the different nonlinear solvers. 
In this study, the GMRES solution computed with a 
tolerance of 10−10 was used as the reference solution. 
In Figure 4a, the production trends obtained using 
the proposed Prob-BPNN are compared with those 
obtained using the GMRES method. Both methods 
exhibited a consistent decline in oil production 
over time, with Prob-BPNN closely following the 
GMRES curve, thereby demonstrating the robustness 
and accuracy of the proposed solver in capturing the 
production behavior. 

As shown in Figure 4b, the CG and BiCG-STAB 
methods failed to reproduce a physically meaningful 

production profile, yielding results that deviated 
substantially from the reference solution. Moreover, 
the BiCG-STAB method shows large oscillations 
and occasional negative values, further underscoring 
the numerical instability. These discrepancies 
highlight that both CG and BiCG-STAB introduce 
significant errors when applied to nonlinear reservoir 
simulations, thereby limiting their reliability 
compared to Prob-BPNN and GMRES.

Figure 5 illustrates the computational efficiencies 
of the different nonlinear solvers for Case 1. The 
Prob-BPNN method consistently requires a higher 
computational effort than the other methods, with 
CPU times fluctuating between 0.1–0.7 seconds. This 
increased cost arises from the additional probabilistic 
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inference and neural network evaluation steps 
embedded in the solver. By contrast, GMRES, CG, 
and BiCG-STAB exhibit markedly lower CPU times, 
generally remaining below 0.1 seconds throughout 
the simulation. Among them, the CG achieved 
the lowest computational demand, reflecting its 
relatively simple algorithmic structure. 

However, as discussed for the production 
profiles (Figure 4), the computational advantage of 
CG is offset by its inability to generate physically 

meaningful results. Similarly, BiCG-STAB suffers 
from instability issues in production predictions, 
despite its competitive efficiency. GMRES offers 
a more balanced trade-off, maintaining moderate 
CPU times and reliable accuracy. Overall, although 
Prob-BPNN incurs a higher computational burden, 
it provides stable and physically consistent results, 
highlighting the importance of considering both 
numerical stability and efficiency when evaluating 
solver performance.

Figure 4. Oil production rate for Case 1, result from (a). Prob-BPNN and GMRES (b). CG and BiCG-STAB. 
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Figure 6 shows the evolution of the final residual 
norm obtained from different nonlinear solvers 
throughout the simulation for Case 1. The Prob-
BPNN method exhibits oscillatory behavior in the 
residuals, but remains consistently within the order 
of 10-4, indicating convergence stability despite 
fluctuations. GMRES demonstrated an overall 
smoother trend, although its residuals gradually 
increased with simulation time, suggesting potential 
challenges in maintaining accuracy in later stages. 
In contrast, both CG and BiCG-STAB displayed 
pronounced instabilities with large variations in the 
residual norm across the simulation. These erratic 
behaviors reflect poor convergence characteristics 

Figure 5. Computational time for Case 1.

 

 

 

 

 

 

 

 

 

 

and highlight their limited robustness when applied 
to nonlinear reservoir problems. In summary, the 
results confirm that Prob-BPNN and GMRES offer a 
more reliable convergence performance, whereas CG 
and BiCG-STAB suffer from significant instability.

Figure 7 shows the oil production rate profiles 
for Case 2. In Figure 7a, the proposed Prob-BPNN 
and GMRES capture the characteristic production 
decline trend, with Prob-BPNN closely following 
GMRES. This consistency indicates that Prob-BPNN 
provides physically meaningful results and maintains 
robustness throughout the simulation. In contrast, 
Figure 7b highlights the limitations of CG and BiCG-

Figure 6.  The final residual norm calculated for Case 1. The oscillation of residual values observed in Prob-BPNN, GMRES, 
CG, and BiCG-STAB indicates potential issues with convergence stability. Among these methods, GMRES demonstrates 

the highest stability up to approximately t = 250 days.
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Figure 6. The final residual norm calculated for Case 1. 

 
Figure 7 showspresents the oil production rate 

profiles for Case 2. In Figure 7a, the proposed 
Prob-BPNN and GMRES capture the 
characteristic production decline trend, with Prob-
BPNN closely following the GMRES. This 
consistency indicates that Prob-BPNN provides 
physically meaningful results and maintains 
robustness thacroughout thess simulation time. In 
contrast, Figure 7b highlights the limitations of 
CG and BiCG-STAB. The CG solver produceds 
highly irregular and oscillatory production rates, 
including physically implausible spikes that 
deviated significantly from the expected reservoir 
behavior. Similarly, BiCG-STAB displayeds 
numerical instabilities, with abrupt fluctuations 
and unrealistic negative production rates. The 
results confirmed that Prob-BPNN and GMRES 
yielded stable and physically consistent 
production trends, whereaswhile CG and BiCG-
STAB exhibitedsuffer from convergence and 
stability issues. 

Figure 8 compares the computational 
efficienciesy of the nonlinear solvers forin Case 2. 
The Prob-BPNN solver consistently requireds the 
highest computational cost, with CPU times 
ranging from approximately 0.8 to 1.6 seconds. 
InBy contrast, GMRES, CG, and BiCG-STAB 
achieved significantly shorterlower CPU times. 
Among these, CG demonstrateds the fastest 

execution, benefiting from its relatively simple 
algorithmic structure. However, as highlighted in 
the production profiles (Figure 7b), the 
computational advantage of CG is offset by its 
inability to provide physically meaningful or 
stable results. Although Prob-BPNN is more 
computationally more demanding, it provides 
stable and physically consistent outcomes, 
whereas CG and BiCG-STAB are prone to 
numerical instabilities. 

Figure 9 shows the evolution of the final 
residual norm for Case 2, comparing the 
performances of Prob-BPNN, GMRES, CG, and 
BiCG-STAB. The Prob-BPNN solver maintaineds 
residual values consistently below the order of 
10−3, with relatively smooth fluctuations over 
time, indicating convergence stability. GMRES 
also remaineds within the same magnitude, 
although with slightly more scattered variations, 
suggesting comparable accuracy but with less 
stability in later simulation stages. In contrast, CG 
and BiCG-STAB displayed pronounced 
oscillations throughout the simulation, with sharp 
drops and spikes in residual values. These erratic 
patterns are symptomatic of poor convergence 
behavior, reflecting the limited robustness of these 
solvers when applied to nonlinear systems in 
reservoir simulations. 



195

A Hybrid Probabilistic-Backpropagation Neural Network Solver for Nonlinear Systems in Reservoir Simulation 
(Adrianto et al.)

DOI org/10.29017/scog.v48i3.1751 |

STAB. The CG solver produced highly irregular and 
oscillatory production rates, including physically 
implausible spikes that deviated significantly from 
the expected reservoir behavior. Similarly, BiCG-
STAB displayed numerical instabilities with abrupt 

fluctuations and unrealistic negative production rates. 
The results confirmed that Prob-BPNN and GMRES 
yielded stable and physically consistent production 
trends, whereas CG and BiCG-STAB exhibited 
convergence and stability issues.

Figure 7. Oil production rates for Case 2, (a) Prob-BPNN produces a more accurate solution compared to GMRES, 
whereas (b) CG and BiCG-STAB yield unrealistic results, exhibiting oscillatory and even negative oil production rates.
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Figure 8. Computational time for Case 2. Prob-BPNN requires a total computation time approximately 19–38 times longer 
than that of GMRES, CG, and BiCG-STAB. Nevertheless, Prob-BPNN provides the most accurate solution among all 

methods.

 

 

 

 

 

 

 

 

 

 

Figure 9. The final residual norm for Case 2. The oscillation of residual values in GMRES, CG, and BiCG-STAB indicates 
issues with convergence stability, whereas Prob-BPNN exhibits the most stable residual behavior.

 

 

 

 

 

 

 

 

 

 

Figure 8 compares the computational efficiencies 
of the nonlinear solvers for Case 2. The Prob-BPNN 
solver consistently required the highest computational 
cost, with CPU times ranging from approximately 
0.8 to 1.6 seconds. In contrast, GMRES, CG, and 
BiCG-STAB achieved significantly shorter CPU 
times. Among these, CG demonstrated the fastest 
execution, benefiting from its relatively simple 

algorithmic structure. However, as highlighted in the 
production profiles (Figure 7b), the computational 
advantage of CG is offset by its inability to provide 
physically meaningful or stable results. Although 
Prob-BPNN is computationally more demanding, it 
provides stable and physically consistent outcomes, 
whereas CG and BiCG-STAB are prone to numerical 
instabilities.
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Figure 9 shows the evolution of the final residual 
norm for Case 2, comparing the performances of 
Prob-BPNN, GMRES, CG, and BiCG-STAB. The 
Prob-BPNN solver maintained residual values 
consistently below the order of 10^(-3), with 
relatively smooth fluctuations over time, indicating 
convergence stability. GMRES also remained 
within the same magnitude, although with slightly 
more scattered variations, suggesting comparable 
accuracy but with less stability in later simulation 
stages. In contrast, CG and BiCG-STAB displayed 
pronounced oscillations throughout the simulation, 
with sharp drops and spikes in residual values. These 
erratic patterns are symptomatic of poor convergence 
behavior, reflecting the limited robustness of these 
solvers when applied to nonlinear systems in 
reservoir simulations.

Table 2 summarizes the performance metrics 
of the nonlinear solvers for Cases 1 and 2. As 
mentioned previously, we used a GMRES solution 
with a tight tolerance of 10-10 as the reference 
solution. For Case 1, both Prob-BPNN and GMRES 
achieved very low errors (MAE < 0.02, RMSE < 
0.02, MAPE < 3%) with high R2 values (0.945 and 
0.978, respectively), indicating strong agreement 
with the reference solution. In contrast, CG and 
BiCG-STAB exhibited substantial deviations with 
MAE values of 2.091 and 3.512, RMSE values 
exceeding 2.7, and extremely high MAPE (292% 
and 497%). Their negative R2 values (−1877.487 for 
CG and −34072.207 for BiCG-STAB) reflect poor 
correlation with the reference solution. For Case 2, 
Prob-BPNN maintains accuracy, with MAE = 0.066, 

RMSE = 0.071, MAPE ≈ 1.88%, and R2 = 0.986, 
all indicating close agreement with the reference 
solution. The GMRES remained accurate but showed 
a moderate increase in error (MAE = 0.329, RMSE = 
0.345, R2 = 0.677). Conversely, CG and BiCG-STAB 
failed to reproduce the reference behavior, with very 
large errors (MAE > 18, RMSE > 9.5, and MAPE 
exceeding 100%) and strongly negative R2 values. 
These quantitative performance metrics corroborate 
the oil production rate profile findings. Prob-BPNN 
consistently achieved accuracy close to that of the 
reference solution, whereas CG and BiCG-STAB 
yielded unreliable and physically implausible results.

Table 3 presents a comparison of the solver 
performances in terms of the iteration count, residual 
statistics, and total CPU time for Cases 1 and 2. In 
Case 1, GMRES and CG required significantly fewer 
iterations (182 and 288, respectively) than Prob-
BPNN (16,603) and BiCG-STAB (343). GMRES 
was the most efficient solver in this case, requiring 
the shortest CPU time (2.8479 s). In Case 2, the 
differences were more pronounced. Prob-BPNN 
performed an extremely large number of iterations 
(653,345), far exceeding those of GMRES (260), 
CG (747), and BiCG-STAB (605). Nevertheless, 
Prob-BPNN achieved a residual of less than 10-3 as 
a Krylov solver, even though it had a substantially 
higher CPU time (45.8955 s). GMRES demonstrated 
the most efficient performance, solving the system 
in only 1.5277 s, whereas CG and BiCG-STAB 
remained moderately efficient (2.4412 s and 1.3358 
s, respectively). 

 

Table 2. Performance metrics of the nonlinear solvers, with the tolerance of 10-10 as the reference solution.

   Prob-BPNN GMRES CG BiCG-STAB 

  Case 1    
     MAE 0.013 0.006 2.091 3.512 
     RMSE 0.014 0.009 2.708 11.533 
     MAPE (%) 2.036 1.104 292.499 496.716 
     R2 0.945 0.978 -1877.487 -34072.207 
  Case 2    
     MAE 0.066 0.329 18.414 4.329 
     RMSE 0.071 0.345 24.273 9.506 
     MAPE (%) 1.882 8.639 514.998 121.097 
     R2 0.986 0.677 -1588.612 -242.796 
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Table 3. Iteration counts, residual statistics, and CPU times for different nonlinear solvers, with the tolerance of 10-10 as 
the reference solution.

     Prob-BPNN GMRES CG BiCG-STAB  

    Case 1   
     Total iteration 16603 182 288 343 
     Minimum residual 7.45E-05 1.12E-04 1.15E-04 1.10E-04 
     Maximum residual 9.84E-04 9.99E-04 9.42E-04 9.79E-04 
     Average residual 5.42E-04 4.80E-04 5.90E-04 4.56E-04 
     Total CPU time (s) 9.958 2.8479 2.8794 3.119 
    Case 2   
     Total iteration 653345 260 747 605 
     Minimum residual 7.02E-04 6.80E-04 3.94E-04 3.68E-04 
     Maximum residual 1.00E-03 9.97E-04 9.93E-04 9.86E-04 
     Average residual 9.73E-04 8.53E-04 7.90E-04 8.12E-04 
     Total CPU time (s) 45.895 1.527 2.441 1.335 

 
 
 
 
 
 
 
 
 
 

CONCLUSION
This study introduced and evaluated a hybrid 

probabilistic backpropagation neural network (Prob-
BPNN) solver for nonlinear systems in reservoir 
simulations. The performance of the proposed 
solver was evaluated using two reservoir model 
cases against widely used Krylov subspace methods: 
GMRES, CG, and BiCG-STAB.

The results demonstrate that the Prob-BPNN 
solver is preferable in scenarios in which accuracy 
and numerical stability are prioritized over 
computational efficiency. The solver consistently 
reproduced physically meaningful production 
profiles, with quantitative errors (MAE ≤ 0.066, 
RMSE ≤ 0.071, MAPE ≤ 2.04%, and R2 ≥ 0.945) 
that were comparable to the reference solution from 
GMRES at a tight tolerance of 10-10. By contrast, 
CG and BiCG-STAB often failed to capture the 
correct reservoir dynamics, yielding very high errors 
(e.g., MAPE exceeding 292% in Case 1 and 514% 
in Case 2) and negative R2 values, which highlight 
their instability.

In terms of the computational cost, Prob-BPNN 
incurred significantly higher CPU times than the 
Krylov solvers. For example, in Case 1, the solver 
required 9.96 s compared to 2.85 s for GMRES, and 
in Case 2, it required 45.90 s compared to only 1.53 s 
for GMRES. These differences are explained by the 
additional inference steps introduced by the neural 
network initialization and the probabilistic updates 
embedded in the algorithm. While GMRES remained 
the most computationally efficient method, Prob-
BPNN achieved residual convergence on the same 
order of magnitude (below 10-3), demonstrating its 

reliability despite higher iteration counts. The findings 
suggest that Prob-BPNN is particularly suitable when 
reservoir studies require accuracy and robustness 
against instability. However, computational overhead 
is a clear limitation. Therefore, future research should 
focus on reducing execution time, for example, 
by leveraging parallelization strategies, GPU 
acceleration, or hybridization with Krylov methods 
to improve scalability.
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