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ABSTRACT - Reservoir simulation requires solving large, sparse systems of nonlinear equations, where
iterative Krylov subspace solvers such as the conjugate gradient (CQG), stabilized biconjugate gradient (BiCG-
STAB), and generalized minimal residual (GMRES) are widely applied. However, these methods often have
limitations in terms of their stability and accuracy in nonlinear systems. This paper introduces a hybrid
probabilistic backpropagation neural network (Prob-BPNN) solver that integrates neural-network-based
initialization with probabilistic inference to improve robustness. The solver was benchmarked against CG,
BiCG-STAB, and GMRES using two synthetic reservoir models with the GMRES solution at a tolerance of
10°1°, serving as the reference solution. The results show that Prob-BPNN consistently achieved production
profiles closely matching the reference solution, with errors of MAE < 0.066, RMSE < 0.071, MAPE
< 2.04%, and R? > 0.945. In contrast, CG and BiCG-STAB produced unstable and nonphysical results,
with errors exceeding 292% and negative R2 values. In terms of computational performance, Prob-BPNN
required 9.96 s in Case 1 and 45.90 s in Case 2, compared to 2.85 s and 1.53 s for GMRES, respectively.
Although more computationally expensive, Prob-BPNN delivered convergence on the same residual order
of magnitude (below 10-3) as GMRES while avoiding the severe instabilities observed in CG and BiCG-
STAB. These findings indicate that the Prob-BPNN is preferable in applications where solver robustness
and accuracy are critical, even at the expense of a higher execution time. Future research should focus
on reducing computational overhead through parallelization and hybridization strategies to enhance the
scalability of large-scale reservoir models.
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INTRODUCTION

Reservoir simulation is a method used in
reservoir engineering to quantitatively predict the
dynamic behavior and transport of multiphase fluids
within porous media over time. It can provide reliable
forecasts of reservoir performance, as the primary
function of a simulator is to predict reservoir behavior
under a variety of operating scenarios (Habib &
Joslin 2020; Kristanto et al., 2025; Mithani et al.,
2022; Sugihardjo, 2022; Swadesi et al., 2025; Yan
et al., 2025). The workflow for obtaining solutions
in the reservoir simulator is shown in Figure 1. The
main challenge in reservoir simulations is solving a
large, sparse system of nonlinear algebraic equations
that result from discretizing the governing partial
differential equations (PDEs) for fluid flow (Alpak
etal., 2023; Chen et al., 2022; Jammoul et al., 2023).
Therefore, research on nonlinear solvers for reservoir
simulations is being conducted to develop robust and
efficient methods.

Review of existing solvers for reservoir
simulation

Nonlinear solvers are generally categorized into
two main types: direct and iterative. Direct solvers
aim to obtain an exact solution in a finite number of
operations and are typically robust and independent
ofinitial guesses (Duran & Tuncel 2014; Yang et al.,
2025). However, they are computationally expensive
and have high memory demands owing to matrix
factorization and fill-in effects, particularly when
applied to large sparse systems. By contrast, iterative
solvers generate a sequence of approximations
that gradually converge to the desired solution and
generally require less memory than direct solvers.
Consequently, the solution of equations in reservoir
simulators is typically carried out using iterative
solvers such as the conjugate gradient (CQG),
stabilized biconjugate gradient (BiCG-STAB), and
generalized minimal residual (GMRES).

The CG method (Hestenes & Stiefel 1952)
is typically applied to the pressure equation in
two-phase (oil-water or gas-water) models solved
sequentially (e.g., Implicit Pressure, Explicit
Saturation). The CG only requires the storage of
a few vectors, which is a significant advantage for
large problems in which memory is a constraint.
In addition, CG often converges quickly in well-
conditioned problems. The main drawback of the CG
is its strict requirements for symmetric and positive-
definite matrices. This is often not the case in fully
implicit models, which result in highly nonsymmetric
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Jacobian matrices owing to the strong coupling
between variables such as pressure, saturation, and
composition (Gharieb et al., 2024; Jiang & Pan 2022;
Tokuda & Hashimoto 2023).

Unlike CG, BiCG-STAB (van der Vorst 1992) is
designed to handle nonsymmetric matrices that arise
from fully implicit formulations. BiCG-STAB also
requires the storage of a limited number of vectors,
making it memory-efficient for large problems. The
“stabilized” part of its name refers to its ability to
smooth out the erratic convergence behavior often
seen in other biconjugate gradient-based methods.
However, the performance of BiCG-STAB is highly
dependent on the quality of the preconditioner (Benzi
2002; Benzi & Ttma 1999).

GMRES (Saad & Schultz 1986) determines an
approximate solution by minimizing the residual
norm over a subspace. This minimizes the residual
at each step, guaranteeing a monotonic decrease
in the residual norm. The GMRES is particularly
effective in solving linear systems from fully
implicit formulations because it results in highly
nonsymmetric Jacobian matrices.

However, GMRES has issues related to memory
consumption and computational load. The high
memory consumption is because this algorithm
requires storage of the basis of the Krylov subspace,
which grows at each iteration (Aliaga et al., 2023;
Zhao et al., 2022). The computational cost is high
because the orthogonalization process at each step of
the Arnoldi iteration is computationally expensive,
which adds to the overall cost of the solver (He et
al., 2016).

Review of advances research in nonlinear
solvers

Bakhvalov (1966) introduced multi-grid methods
that use a hierarchy of grids to solve a linear system.
This method works by smoothing the high-frequency
error components on a fine grid and then solving
the remaining low-frequency error components on
a coarser grid, where the problem is smaller and
cheaper to solve. This process is repeated across
multiple coarsening levels. The main advantage
of this method is its numerical stability because its
computational work scales linearly with the number
of unknowns. However, the implementation of the
multigrid method is challenging because it requires
significant effort to tune an effective coarsening
strategy and intergrid transfer operators for complex
geology (Stiiben et al., 2007). While highly effective
for the elliptic pressure equation, it is less suited



A Hybrid Probabilistic-Backpropagation Neural Network Solver for Nonlinear Systems in Reservoir Simulation
(Adrianto et al.)

for the hyperbolic-dominated transport equations
for saturation and concentration (Hersholt et al.,
2019). Because Newton-based methods require
the assembly of both the Jacobian and residual for
a fully coupled system of equations, an operator-
based linearization (OBL) approach was introduced.
In this algorithm, the discretized mass and energy
conservation equations are reformulated into an
operator form that clearly distinguishes between
the spatially dependent components and the state-
dependent properties of the governing equations
(Asifet al., 2025; Khait & Voskov 2017). However,
the OBL exhibits a decline in performance in cases
with very high nonlinearity, such as in combinations

of cAmerican petroleum institute llarity, gravity, and
multiphase flow (Li & Abushaikha 2022).

In addition, several studies have focused on
solvers that can be used in parallel frameworks.
Bhogeswara and Killough (1994) introduced a
hybrid numerical approach combining domain
decomposition and multigrid techniques to
efficiently solve large, sparse linear systems in
reservoir simulations on both sequential and parallel
computers. Manea et al. (2016) presented a parallel
algebraic multiscale (AMS) solver for the pressure
equation in heterogeneous reservoir models,
formulated as a two-level domain decomposition
algorithm with a localization assumption, and

Formulation of the nonlinear
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Figure 1. Typical workflow of a reservoir simulator for solving nonlinear equations.
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implemented a scalable AMS on multicore and
many-core architectures. Kang et al. (2018) proposed
a parallel method using OpenACC to accelerate serial
code and ease GPU porting, combined with GPU-
aided domain decomposition to enhance reservoir
simulation efficiency. In their studies, the GPU-aided
approach outperformed the CPU-based version by
up to two times while reducing code modification to
approximately 22% with OpenACC. Furthermore,
domain decomposition boosts the execution
efficiency by up to 1.7 times. Gasparini et al. (2021)
utilized a hybrid OpenMP/MPI programming model
with a two-level hierarchical data structure that was
efficiently mapped onto OpenMP threads and MPI
processes.

Review of neural networks for reservoir
simulation

Artificial neural networks (ANN) are widely used
in proxy modeling for reservoir simulations, but their
roles differ from those of nonlinear solvers. A proxy
model serves as a surrogate or approximation for a
full-physics reservoir simulator. Instead of directly
solving a large system of nonlinear partial differential
equations that describe multiphase flow in porous
media, the ANN was trained on input—output data
generated from a set of precomputed simulations.
Once trained, an ANN can quickly predict reservoir
responses, such as production rates, pressure, or
saturation profiles, under new operating conditions
(Zubarev 2009). Kim et al. (2017) integrated a deep
neural network (DNN) with a stacked autoencoder
(SAE) for multi-objective history matching modeling
applications. Isaiah et al. (2013) combined an ANN
with the Kriging geostatistical algorithm to predict
porosity and permeability, and then applied it to
address the challenges of reservoir simulation in
mature fields with sparse and outdated data.

Mamo & Dennis (2020) used a nonlinear
autoregressive network with an external input
(NARX) structure as a prediction model and found
that the Bayesian regularization algorithm was the
most suitable for training the model. This is because
Bayesian regularization can generalize datasets
with noise and prevent overfitting; however, it
requires a longer computation time. (Alakeely &
Horne 2022) examined the use of generative deep
learning, specifically a variational autoencoder
(VAE), as a proxy for simulating oil and water
production profiles. The VAE was trained to map
temporal and spatial inputs to a series of production
rate data over time, and the results showed that the
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VAE significantly outperformed machine learning
architectures in predicting production flow rates at
unseen locations.

Despite rAmerican petroleum institute d
progress, the proxy model approach faces several
challenges. Proxy models are considered black boxes
because they do not incorporate the physical meaning
of a dataset, resulting in predictions that may be
physically inconsistent (Karniadakis et al., 2021).
Second, the proxy models may not be sufficiently
robust to make long-term predictions. This is because
the proxy models are only applied to the training
dataset interval (Almajid & Abu-Al-Saud 2022).

Another neural network method that has
recently been used in reservoir modeling is the
physics-informed neural network (PINN), which
was first introduced by (Raissi et al., 2019). The
PINN algorithm integrates the data, boundary
conditions, and initial conditions expressed in the
form of partial differential equations to construct
a function loss equation. (Gasmi & Tchelepi 2021)
showed that the PINN could be used to solve fluid
flow equations in synthetic reservoir models with an
accuracy comparable to that of classical numerical
methods. One of its advantages is that PINN can
infer unknown parameters, such as permeability and
porosity, with limited pressure data. Furthermore,
(Gasmi & Tchelepi 2022) introduced the concept
of parameterized PINN (P-PINN), which is a PINN
architecture that uses random parameters, such as
stochastic permeability distributions, as inputs.
(Zhang et al., 2024) applied a PINN to the Buckley-
Leverett problem and demonstrated that it can
capture the evolution of the saturation front, even
under heterogeneous conditions with sharp gradients.

The challenge in the application of PINN
in reservoir models is their scalability. Field-
scale reservoir models render PINN training
computationally cumbersome. The significant
differences between the dynamics around the well
and areas far from the well could disrupt the training
stability and thus slow convergence (Han et al.,
2023). Moreover, the PINN generates computational
complexity because training the PINN on models
with millions of grid cells requires the evaluation of
a massive number of residuals, which is still very
difficult to accommodate even with GPU acceleration
(Gasmi & Tchelepi 2022).

This study introduces a novel nonlinear solver
that combines backpropagation neural networks
(BPNN) with a probabilistic approach rather than
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physics-informed neural networks (PINNs). The
proposed method is more readily integrated into
existing reservoir simulators, whereas PINNs,
despite their accuracy, typically involve substantially
higher computational demands, even when applied
to relatively simple synthetic models.

METHODOLOGY

Simulation framework

The computational framework for this study
integrates two main platforms: the MATLAB
Reservoir Simulation Toolbox (MRST) and Python.
MRST, developed by SINTEF Digital (Lie 2019),
served as the reservoir simulation environment. Its
open-source and modular design makes it particularly
suitable for research purposes, as it allows for the
seamless incorporation of prototype methods and
numerical experiments. During the simulation run,
MRST formulates a system of nonlinear equations
arising from the discretization of the governing flow
equations. Instead of solving these equations using
their default solvers, MRST is conFigured to call an
external Python function containing the proposed
solver algorithm. This setup ensures that the Python-
based solver is directly embedded within the MRST
simulation workflow. MRST provides the system
matrices and residuals, whereas Python executes the
solver computations and returns the solution to the
MRST for the subsequent simulation steps.

Hybrid probabilistic — backpropagation neural
network solver (Prob-BPNN)

A complete explanation of the technique for
solving nonlinear systems using a backpropagation
neural network (BPNN) can be found in Goulianas
et al. (2018). This technique works by constructing
a neural network that is a direct structural mirror
of a system of equations that must be solved.
The output neurons are specifically designed to
calculate the value of each equation in the system. In
summary, four layers are involved in the feedforward
neural network architecture, with each layer as
follows: 1). Layer O (input): A single input neuron
that always has a value of one; 2). Layer 1 (the
solution vector) contains n neurons, where n is the
number of variables in the system (x,x,,...,x ). The
synaptic weights connecting layers 0 to 1 were the
only variable weights in the entire network. After
successful training, the values of these weights
become components of the system root; 3). Layer 2
(term calculation): This layer comprises specialized

neurons that calculate each multiplicative term.
The weights connecting layers 1 and 2 are fixed
and correspond to the exponents in each term of the
equations; 4). Layer 3 (output) contained n output
neurons, one for each system equation. Each neuron
sums the terms calculated in layer 2 to reconstruct
its corresponding polynomial equation. The weights
connecting layers 2 and 3 are also fixed, and represent
the coefficient terms.

For a given phase (e.g., oil, gas, and water) in a
specific grid cell i, the residual equation, R, ata new
time level, n+1, is written as

R; = [Accumulation] — [Flux]
— (Source / Sink) (1)
=0

The accumulation and flux terms are represented
by the main structure of the network, whereas the
source/sink terms correspond to a fixed bias in the
BPNN. We use the identity function as an activation
function and an adaptive learning rate, 5, defined as:

B(k) <

2
n <6Fim(x)>2 2)

i=1 axk

Probabilistic linear solvers (Wenger & Hennig
2020) reformulate the solution for linear systems as
a Bayesian inference problem. Unlike conventional
deterministic solvers that provide a single-point
estimate, probabilistic solvers yield a probability
distribution over the solution space.

Suppose we have a task of solving nonlinear
equations:

f(x) =0, f:R" > R" 3)

At iteration k, the nonlinear function is
approximated using a first-order Taylor expansion,
as follows:

[l +8) = f(x) +] ()8 4)
ar| . . .
where J(x;) =——| is the Jacobian. This
0x 1y,

transforms the nonlinear problem into a local
linear system, as follow:
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J(xi)8 = —f (xi) )

Instead of solving the linear system exactly, a
probabilistic model is imposed:

& ~N (o, Xo0) (6)

where p, and Y encode prior belief about the
solution update. After observing the matrix vector
products, for example J(x,)v, Bayesian updating
yields a posterior:

p(& | observations) = N (ug, k) (7)

The mean g, acts as the solution update, while
2., quantifies uncertainty. Subsequently, the iteration
is obtained as

X1 = X T Mk (8)

In this study, we used a BPNN to make an initial
guess for the probabilistic solver. The workflow of
the hybrid probabilistic-backpropagation neural
network (Prob-BPNN) solver is shown in Figure 2,
and can be explained as follows: 1). Take as input:
the matrix-vector multiplication operator A(.), the
vector b, and optionally a prior distribution for 4 and
its inverse /; 2). Make an initial guess x,; The value
is calculated using the BPNN approach; 3). Calculate
the residual norm, r,: The residual measures the error
level of the current solution, i.e., how far Ax, is from
the target b.

Steps 4 through 10 are iterative procedures until
satisfy the solution criteria:

Vtr(Cov[x]) > max(8r¢oullbll2, Sator) )

4). Compute action or search direction via
policy, s : This direction is calculated by applying the
expectation of the inverse matrix E[ H] to the negative
of the previous residual 7;-;; 5). Make observations,
yi: This process applies matrix 4 in the direction of
search si; 6). Calculate the optimal step size, ai: This
process determines how far to move along the search
direction s;; 7). Update the solution estimate, xi: The
estimate of x;-; is moved by a; toward the search for
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si to obtain a new, better estimate, x;. 8). Update the
residual, 7i: This is a more computationally efficient
way to obtain the new residual r; without recalculating
Axi-b; 9). Infer posterior distributions: This process
uses the collected information to infer new posterior
distributions for the matrix 4 and its inverse H; 10).
Calibrate the uncertainty: This process uses all search
directions (S) and observation results (Y) that have
been collected to adjust uncertainties (@, 7).

After the iteration stops, this solver defines the
final confidence about the solution x.

RESULTS AND DISCUSSION

In this study, we evaluated the performance of the
solver using two reservoir geometry models, namely,
Cases 1 and 2, as shown in Figure 3. Case 1 had
dimensions of 200, 200, and 50 m in the x-, y-, and
z-directions, respectively, with a grid configuration
of 5 x 4 x 5, resulting in 100 cells (Figure 3a).
It consisted of five vertical layers, each 10 m in
thickness. In the x-direction, local grid refinement
was applied at x = 100 m with a thickness of 0.001
m to represent the fracture. The fracture grids are
characterized by a porosity of 0.99 and a permeability
of 5000 mD, whereas the surrounding matrix grids
have a porosity of 0.05 and a permeability of 0.1 mD.
A single vertical production well (P1) was located
at the edge of the model, extending from a depth of
0to 30 m.

In Case 2, we used an unstructured grid
with a configuration of 6 x 6 x 5 (Figure 3b). A
homogeneous reservoir model was employed with
uniform rock properties throughout the domain,
including a permeability of 30 mD and porosity of
0.3. In both cases, we used a single-phase oil system
with a density of 750 kg/m® and a viscosity of 5 ¢p.
The properties of the Jacobian matrix resulting from
both cases are listed in Table 1.

Table 1. Properties of the Jacobian matrix

Case 1 Case 3
Matrix size 102 x 102 182 x 182
Number of elements 10,404 33,404
Number of nonzero 579 1327
elements
Condition number 2.3 x 108 2.8 x 108
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Figure 2. Workflow for solving nonlinear sytems in reservoir simulation using hybrid probabilistic-backpropagation neural
network (Prob-BPNN) solver.
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Figure 3. Model geometries for (a). Case 1 and (b). Case 2.

Simulation results

Figure 4 presents the oil production rate profiles
for Case 1, comparing the different nonlinear solvers.
In this study, the GMRES solution computed with a
tolerance of 107'° was used as the reference solution.
In Figure 4a, the production trends obtained using
the proposed Prob-BPNN are compared with those
obtained using the GMRES method. Both methods
exhibited a consistent decline in oil production
over time, with Prob-BPNN closely following the
GMRES curve, thereby demonstrating the robustness
and accuracy of the proposed solver in capturing the
production behavior.

As shown in Figure 4b, the CG and BiCG-STAB
methods failed to reproduce a physically meaningful
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production profile, yielding results that deviated
substantially from the reference solution. Moreover,
the BiCG-STAB method shows large oscillations
and occasional negative values, further underscoring
the numerical instability. These discrepancies
highlight that both CG and BiCG-STAB introduce
significant errors when applied to nonlinear reservoir
simulations, thereby limiting their reliability
compared to Prob-BPNN and GMRES.

Figure 5 illustrates the computational efficiencies
of the different nonlinear solvers for Case 1. The
Prob-BPNN method consistently requires a higher
computational effort than the other methods, with
CPU times fluctuating between 0.1-0.7 seconds. This
increased cost arises from the additional probabilistic
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inference and neural network evaluation steps
embedded in the solver. By contrast, GMRES, CG,
and BiCG-STAB exhibit markedly lower CPU times,
generally remaining below 0.1 seconds throughout
the simulation. Among them, the CG achieved
the lowest computational demand, reflecting its
relatively simple algorithmic structure.

However, as discussed for the production

profiles (Figure 4), the computational advantage of
CG is offset by its inability to generate physically

meaningful results. Similarly, BiCG-STAB suffers
from instability issues in production predictions,
despite its competitive efficiency. GMRES offers
a more balanced trade-off, maintaining moderate
CPU times and reliable accuracy. Overall, although
Prob-BPNN incurs a higher computational burden,
it provides stable and physically consistent results,
highlighting the importance of considering both
numerical stability and efficiency when evaluating
solver performance.
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Figure 4. Oil production rate for Case 1, result from (a). Prob-BPNN and GMRES (b). CG and BiCG-STAB.
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Figure 6. The final residual norm calculated for Case 1. The oscillation of residual values observed in Prob-BPNN, GMRES,
CG, and BiCG-STAB indicates potential issues with convergence stability. Among these methods, GMRES demonstrates
the highest stability up to approximately t = 250 days.

Figure 6 shows the evolution of the final residual
norm obtained from different nonlinear solvers
throughout the simulation for Case 1. The Prob-
BPNN method exhibits oscillatory behavior in the
residuals, but remains consistently within the order
of 10*, indicating convergence stability despite
fluctuations. GMRES demonstrated an overall
smoother trend, although its residuals gradually
increased with simulation time, suggesting potential
challenges in maintaining accuracy in later stages.
In contrast, both CG and BiCG-STAB displayed
pronounced instabilities with large variations in the
residual norm across the simulation. These erratic
behaviors reflect poor convergence characteristics
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and highlight their limited robustness when applied
to nonlinear reservoir problems. In summary, the
results confirm that Prob-BPNN and GMRES offer a
more reliable convergence performance, whereas CG
and BiCG-STAB suffer from significant instability.

Figure 7 shows the oil production rate profiles
for Case 2. In Figure 7a, the proposed Prob-BPNN
and GMRES capture the characteristic production
decline trend, with Prob-BPNN closely following
GMRES. This consistency indicates that Prob-BPNN
provides physically meaningful results and maintains
robustness throughout the simulation. In contrast,
Figure 7b highlights the limitations of CG and BiCG-
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STAB. The CG solver produced highly irregular and
oscillatory production rates, including physically
implausible spikes that deviated significantly from
the expected reservoir behavior. Similarly, BiCG-
STAB displayed numerical instabilities with abrupt

fluctuations and unrealistic negative production rates.
The results confirmed that Prob-BPNN and GMRES
yielded stable and physically consistent production
trends, whereas CG and BiCG-STAB exhibited
convergence and stability issues.
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Figure 7. Oil production rates for Case 2, (a) Prob-BPNN produces a more accurate solution compared to GMRES,

whereas (b) CG and BiCG-STAB yield unrealistic results

, exhibiting oscillatory and even negative oil production rates.
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Figure 8. Computational time for Case 2. Prob-BPNN requires a total computation time approximately 19—38 times longer

than that of GMRES, CG, and BiCG-STAB. Nevertheless,

Prob-BPNN provides the most accurate solution among all

methods.
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Figure 9. The final residual norm for Case 2. The oscillation of residual values in GMRES, CG, and BiCG-STAB indicates

issues with convergence stability, whereas Prob-

Figure 8 compares the computational efficiencies
of the nonlinear solvers for Case 2. The Prob-BPNN
solver consistently required the highest computational
cost, with CPU times ranging from approximately
0.8 to 1.6 seconds. In contrast, GMRES, CG, and
BiCG-STAB achieved significantly shorter CPU
times. Among these, CG demonstrated the fastest
execution, benefiting from its relatively simple
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BPNN exhibits the most stable residual behavior.

algorithmic structure. However, as highlighted in the
production profiles (Figure 7b), the computational
advantage of CG is offset by its inability to provide
physically meaningful or stable results. Although
Prob-BPNN is computationally more demanding, it
provides stable and physically consistent outcomes,
whereas CG and BiCG-STAB are prone to numerical
instabilities.
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Figure 9 shows the evolution of the final residual
norm for Case 2, comparing the performances of
Prob-BPNN, GMRES, CG, and BiCG-STAB. The
Prob-BPNN solver maintained residual values
consistently below the order of 107(?), with
relatively smooth fluctuations over time, indicating
convergence stability. GMRES also remained
within the same magnitude, although with slightly
more scattered variations, suggesting comparable
accuracy but with less stability in later simulation
stages. In contrast, CG and BiCG-STAB displayed
pronounced oscillations throughout the simulation,
with sharp drops and spikes in residual values. These
erratic patterns are symptomatic of poor convergence
behavior, reflecting the limited robustness of these
solvers when applied to nonlinear systems in
reservoir simulations.

Table 2 summarizes the performance metrics
of the nonlinear solvers for Cases 1 and 2. As
mentioned previously, we used a GMRES solution
with a tight tolerance of 107'° as the reference
solution. For Case 1, both Prob-BPNN and GMRES
achieved very low errors (MAE < 0.02, RMSE <
0.02, MAPE < 3%) with high R? values (0.945 and
0.978, respectively), indicating strong agreement
with the reference solution. In contrast, CG and
BiCG-STAB exhibited substantial deviations with
MAE values of 2.091 and 3.512, RMSE values
exceeding 2.7, and extremely high MAPE (292%
and 497%). Their negative R* values (—1877.487 for
CG and —34072.207 for BiCG-STAB) reflect poor
correlation with the reference solution. For Case 2,
Prob-BPNN maintains accuracy, with MAE = 0.066,

RMSE = 0.071, MAPE ~ 1.88%, and R* = 0.986,
all indicating close agreement with the reference
solution. The GMRES remained accurate but showed
amoderate increase in error (MAE =0.329, RMSE =
0.345,R?=0.677). Conversely, CG and BiCG-STAB
failed to reproduce the reference behavior, with very
large errors (MAE > 18, RMSE > 9.5, and MAPE
exceeding 100%) and strongly negative R* values.
These quantitative performance metrics corroborate
the oil production rate profile findings. Prob-BPNN
consistently achieved accuracy close to that of the
reference solution, whereas CG and BiCG-STAB
yielded unreliable and physically implausible results.

Table 3 presents a comparison of the solver
performances in terms of the iteration count, residual
statistics, and total CPU time for Cases 1 and 2. In
Case 1, GMRES and CG required significantly fewer
iterations (182 and 288, respectively) than Prob-
BPNN (16,603) and BiCG-STAB (343). GMRES
was the most efficient solver in this case, requiring
the shortest CPU time (2.8479 s). In Case 2, the
differences were more pronounced. Prob-BPNN
performed an extremely large number of iterations
(653,345), far exceeding those of GMRES (260),
CG (747), and BiCG-STAB (605). Nevertheless,
Prob-BPNN achieved a residual of less than 10~ as
a Krylov solver, even though it had a substantially
higher CPU time (45.8955 s). GMRES demonstrated
the most efficient performance, solving the system
in only 1.5277 s, whereas CG and BiCG-STAB
remained moderately efficient (2.4412 s and 1.3358
s, respectively).

Table 2. Performance metrics of the nonlinear solvers, with the tolerance of 10-'° as the reference solution.

Prob-BPNN GMRES CG BiCG-STAB

Case 1
MAE 0.013 0.006 2.091 3.512
RMSE 0.014 0.009 2.708 11.533
MAPE (%) 2.036 1.104 292.499 496.716
R? 0.945 0.978 -1877.487 -34072.207

Case 2
MAE 0.066 0.329 18.414 4.329
RMSE 0.071 0.345 24.273 9.506
MAPE (%) 1.882 8.639 514.998 121.097
R? 0.986 0.677 -1588.612 -242.796
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Table 3. Iteration counts, residual statistics, and CPU times for different nonlinear solvers, with the tolerance of 10° as
the reference solution.

Prob-BPNN GMRES CG BiCG-STAB

Case 1

Total iteration 16603 182 288 343
Minimum residual 7.45E-05 1.12E-04 1.15E-04 1.10E-04
Maximum residual 9.84E-04 9.99E-04 9.42E-04 9.79E-04
Average residual 5.42E-04 4.80E-04 5.90E-04 4.56E-04
Total CPU time (s) 9.958 2.8479 2.8794 3.119
Case 2

Total iteration 653345 260 747 605
Minimum residual 7.02E-04 6.80E-04 3.94E-04 3.68E-04
Maximum residual 1.00E-03 9.97E-04 9.93E-04 9.86E-04
Average residual 9.73E-04 8.53E-04 7.90E-04 8.12E-04
Total CPU time (s) 45.895 1.527 2.441 1.335

CONCLUSION reliability despite higher iteration counts. The findings

This study introduced and evaluated a hybrid
probabilistic backpropagation neural network (Prob-
BPNN) solver for nonlinear systems in reservoir
simulations. The performance of the proposed
solver was evaluated using two reservoir model
cases against widely used Krylov subspace methods:
GMRES, CG, and BiCG-STAB.

The results demonstrate that the Prob-BPNN
solver is preferable in scenarios in which accuracy
and numerical stability are prioritized over
computational efficiency. The solver consistently
reproduced physically meaningful production
profiles, with quantitative errors (MAE < 0.066,
RMSE < 0.071, MAPE < 2.04%, and R’ > 0.945)
that were comparable to the reference solution from
GMRES at a tight tolerance of 10'°. By contrast,
CG and BiCG-STAB often failed to capture the
correct reservoir dynamics, yielding very high errors
(e.g., MAPE exceeding 292% in Case 1 and 514%
in Case 2) and negative R? values, which highlight
their instability.

In terms of the computational cost, Prob-BPNN
incurred significantly higher CPU times than the
Krylov solvers. For example, in Case 1, the solver
required 9.96 s compared to 2.85 s for GMRES, and
in Case 2, itrequired 45.90 s compared to only 1.53 s
for GMRES. These differences are explained by the
additional inference steps introduced by the neural
network initialization and the probabilistic updates
embedded in the algorithm. While GMRES remained
the most computationally efficient method, Prob-
BPNN achieved residual convergence on the same
order of magnitude (below 10%), demonstrating its
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suggest that Prob-BPNN is particularly suitable when
reservoir studies require accuracy and robustness
against instability. However, computational overhead
is a clear limitation. Therefore, future research should
focus on reducing execution time, for example,
by leveraging parallelization strategies, GPU
acceleration, or hybridization with Krylov methods
to improve scalability.
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