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ABSTRACT - The Asri Basin, located in the Java Sea, Indonesia, is a significant hydrocarbon province
with regions that remain underexplored. The available legacy seismic data, however, are limited in quality,
particularly due to their narrow frequency bandwidth and the absence of low-frequency components. This
limitation poses a significant challenge for advanced seismic imaging techniques such as Full Waveform
Inversion (FWI), which rely low-frequency data to generate accurate and reliable subsurface models. This
study aims to reconstruct the missing low-frequency (<10 Hz) components from the band-limited seismic
data to enhance the applicability of FWI. A real-data-driven, self-supervised learning approach for low-
frequency extrapolation is implemented to address this challenge. Using a modified U-Net architecture, the
framework is trained directly on the available band-limited seismic data, eliminating the need for synthetic
or labeled datasets. The self-supervised workflow employs a frequency-specific masking strategy that
enables the model to learn and predict the missing low-frequency content from higher-frequency inputs.
The results demonstrate that the proposed method effectively recovers low-frequency signals, achieving
accurate reconstruction down to <5 Hz, reducing residual amplitudes compared to conventional methods,
and preserving the mid-to-high frequency spectrum. This approach provides a promising solution for
overcoming data limitations and mitigating cycle-skipping issues in FWI applications within the Asri Basin
and comparable geological settings.
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INTRODUCTION

Seismic imaging serves as a fundamental
technique in subsurface exploration and reservoir
characterization, with Full Waveform Inversion
(FWI) playing a crucial role in accurately estimating
subsurface properties (Virieux & Operto 2009;
Tarantola 1986). Low-frequency seismic data are
particularly important in mitigating cycle skipping
and enhancing the convergence of nonlinear
inversion algorithms (Bunks et al., 1995). However,
acquiring low-frequency signals is often constrained
by the physical limitations of seismic sources and
receivers, particularly in geologically complex
environments. The absence of these low-frequency
components can lead to non-uniqueness in the
inversion process and reduce the resolution of the
reconstructed subsurface models.

Traditional approaches to addressing the missing
low-frequency problem include spectral broadening
techniques and model-based extrapolation methods
(Claerbout 1992). While these methods have
achieved varying levels of success, they often rely
on strong assumptions about the data or require
significant computational resources, limiting their
applicability in large-scale surveys. Frequency-
domain analyses, such as spectral decomposition
using STFT and CWT, have also been applied in
reservoir characterization, highlighting both their
potential and limitations (Haris et al., 2019; Diria
et al., 2021). In parallel, inversion strategies in
alternative domains, such as ray parameter inversion,
have been proposed to improve seismic imaging and
impedance estimation (Triyoso et al., 2024).

Recent advances in machine learning, particularly
deep learning, offer promising alternatives for data
reconstruction and enhancement (Yu & Ma 2021). In
recent years, convolutional neural networks (CNNs)
have demonstrated remarkable performance in
various imaging tasks, ranging from image denoising
to super-resolution (Jiantao et al., 2021; Sun et al.,
2022). Applying deep learning to seismic processing
therefore holds significant potential, particularly
for low-frequency extrapolation. For example,
Sun and Demanet (2018, 2020) employed CNNs
to reconstruct low-frequency components directly
from band-limited data using a supervised, trace-by-
trace strategy in the time domain. Other researchers
have refined these methodologies to enhance low-
frequency extrapolation performance (Sigalingging
et al., 2021; Sigalingging et al., 2024; Winardhi et
al., 2024). Despite promising results on synthetic
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datasets, extending these approaches to field data
remains challenging due to complexities inherent in
real-world signals.

Various strategies have been proposed to improve
robustness in field applications. Notably, Fabien-
Ouellet (2020) has demonstrated promising results
in seismic low-frequency prediction and denoising
across both synthetic and real datasets. Similarly,
Araya-Polo et al. (2018) have advanced data-driven
techniques for low-frequency reconstruction,
underscoring the evolving nature of this research
field. Collectively, these contributions highlight
the importance of developing robust deep learning
frameworks capable of generalizing from synthetic
models to the complexities of real seismic data.

Among such frameworks, the U-Net, originally
developed for biomedical image segmentation
(Ronneberger et al., 2015), has proven highly
effective in tasks requiring precise localization
and contextual understanding. Its encoder-decoder
structure, combined with skip connections, enables
efficient feature extraction and reconstruction even
when training data are limited. In seismic imaging,
U-Net-based approaches have recently been explored
for noise attenuation and interpolation (Fang et al.,
2020). However, most of these methods rely on
supervised learning, which requires large labelled
datasets that are often unavailable or costly to
generate in the seismic domain.

To address these challenges, Cheng et al. (2024)
proposed a self-supervised learning methodology
that eliminates the need for data, enabling neural
networks to be trained directly on real seismic
dataset. This paradigm effectively bridges the
generalization gap often encountered in supervised
learning techniques, which are typically trained on
synthetic data.

In this study, self-supervised learning methods
are applied to a 2D marine seismic line from the
Asri Basin, Java Sea, Indonesia. The Asri Basin is a
key hydrocarbon province, with reservoirs primarily
originating from syn-rift deposits (Ralanarko et al.,
2021). The geological evolution of this basin has
been shaped by three major tectonic phases: (1) Rift
Initiation during the pre- to early Oligocene, (2) Syn-
Rift from the early to late Oligocene, and (3) Post-
Rift (Sukanto et al. 1998). These tectonic processes
have produced complex structural configurations,
necessitating advanced seismic imaging techniques
such as FWI for accurate subsurface characterization.
However, legacy seismic data from the Asri Basin
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often suffer from poor quality due to a band-limited
frequency spectrum, where low frequencies are
missing as a result of acquisition constraints. This
deficiency poses significant challenges for seismic
imaging, particularly for FWI, which relies on a
broad frequency range to achieve high-resolution
subsurface models. To overcome this limitations,
this study focuses on reconstructing the missing
low-frequency components using self-supervised
deep learning techniques. The reconstructed low-
frequency data serve as a critical preparatory step for
enhanced seismic imaging, ultimately improving the
outcomes of reprocessing legacy seismic data from
the Asri Basin.

METHODOLOGY

Self-supervised learning

Self-supervised learning (SSL) for low-frequency
seismic extrapolation, as proposed by Cheng et al.
(2024), utilizes the classical U-Net architecture
(Ronneberger etal., 2015). A key advantage of SSL is
its ability to generate training pairs (inputs and labels)
directly from observed data, eliminating the need
for manually labeled datasets. This approach draws
inspiration the Noisier2Noise method in the machine
learning community (Moran et al., 2020). In the
Noisier2Noise framework, the training process relies
solely on the original noisy observations: additional
noise is deliberately added to create a noisier dataset,
while the original noisy data serve as pseudo-labels.
This strategy enables the neural network to learn
noise characteristics and reconstruct the desired
signal without requiring a clean reference data.

Following this principle, LessLow-to-Low
(L2L) framework is introduced for low-frequency
prediction. In L2L, seismic data with reduced low-
frequency content are used as input to predict data
with relatively richer low-frequency content. The
method assumes that available seismic waveform
data, although lacking sufficient low-frequency
energy due to acquisition constraints, can still act
as pseudo-labels. These waveforms typically lack
sufficient low-frequency content due to acquisition
constraints. To create the input for the network, a
high-pass filter to the original data is applied, thereby,
further attenuating the already diminished low-
frequency components. In this setup, the high-pass
filtered data, referred to as the “less low” dataset,
serves as the input, while the original waveforms
(with relatively more low-frequency content) act as

the pseudo-labels. Thus, the L2L framework operates
as a supervised learning proses in which input-label
pairs are derived from the data itself, exemplifying
the concept of self-supervised learning. This allows
the method to be applied directly to real seismic
datasets without requiring external labels. SSL for
low-frequency extrapolation primarily consists of
two components: a warm-up phase and iterative data
refinement (IDR). The warm-up phase, supervised
learning is performed on synthetic datasets generated
from simulated subsurface models. Inputs are created
by applying a high-pass filter to the synthetic data,
while the unfiltered data serve as targets. This
‘less-to-low” dataset is used to pretrain the model
for a set number of epochs, producing an initial
backbone model. In the IDR phase, the pretrain
model is iteratively refined using field seismic data.
Predictions from model serve as pseudo-labels while
corresponding inputs are generated by applying
a high-pass filter to those predictions. In the first
iteration, the warm-up model is used to predict
the original seismic data. At each iteration, the
model is trained for only one epoch, after which the
updated model replaces the previous one, ensuring
progressive refinement.

Deep learning architecture

The SSL framework introduced by Chen
et al. (2024) for low-frequency tasks utilizes a
conventional U-Net architecture. In this study,
we adapt and modify the U-Net to better address
seismic los-frequency extrapolation. The details of
the modified architecture are illustrated in Figure 1.
The model consists of five scales, with 2x2 down-
sampling and 2X2 up-sampling operations. Each
block contains two consecutive convolutional layer,
each with a 3x3 kernel and Leaky Rectified Linear
Unit (Leaky ReLu) activation. Batch normalization
is not applied. The number of filters in both the
encoder and decoder is set to 96, with the final layer
reduced to 48 filers. The complete filter distribution
is depicted in Figure 1.

To train the network, a hybrid loss function that
combines data loss and amplitude spectrum loss was
employed. The hybrid loss function is formulated
using the Mean Absolute Error (MAE) and can be
expressed as:

1
Loss(L,0) = ;Z?’:ﬂLi -0y (1)

where L represents the label data, and O denotes the
output of the models.
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Training prosedur

As described earlier, the model is trained in two
stages: Warm-Up and Iterative Data Refinement
(IDR). The detailed workflow is presented in Figure
2 and described as follows:

Stage 1 preparation of dataset:

In this stage, we generate a synthetic dataset
using the Marmoussi2 velocity models (Figure 3).
The simulation parameters are provided in Table

1. The first receiver is positioned at 25 m from
the left boundary of the model, while the first
shot is located at 0 m. Receiver positions remain
fixed for all shot locations. The data simulation is
conducted using the Julia programming language
with the JUDI framework (Witte et al. 2019). After
generating the shot data, the data are randomly
cropped into patches of 128x128 pixels, resulting
in a total of 9,050 image samples.

|
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Figure 1. The deep-learning U-Net architecture used in this study.
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Figure 2. Workflow of self-supervised learning for low-frequency extrapolation.
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Figure 3. Marmousi2 P-wave velocity model used to generate synthetic shot gathers. The model exhibits strong lateral
and vertical velocity variations representing complex geological structures such as faults, anticlines, and stratigraphic
layering. These heterogeneities make it a standard benchmark model for testing seismic imaging and inversion algorithms.
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Stage 2 warm-up stage:

The image patches from Stage 1 are used for
initial training. The label data consist of original
image patches, while the input data are generated
by applying a high-pass filtering with a randomly
selected cutoff frequency between from 5 to 30
Hz, producing band-limited inputs. The model is
trained for 150 epochs, using a decaying learning
rate (LR) strategy: the initial LR is set to 0.001 and
decays by 0.9 every 30 iterations. Optimization is
performed with the Adam optimizer and a batch
size of 64. The optimal model obtained at the
end of this stage is carried forward to stage 3.

Table 1. Simulation parameter to generate synthetic data.

Parameters Values
Velocity Models 2D Marmoussi2
Grid Spacing 10 x 10 (m)
Grid Number 920 x 300
Number Receiver 361
Number Shot 181
Receiver Spacing 25 (m)
Shot Spacing 50 (m)
Sampling time 0.002 (s)
Time length 3 (s)
Wavelet Ricker
Source Frequency 15 Hz

Stage 3 iterative data refinement (IDR)

At this stage, synthetic data are further used to
ensure that the model generalizes across diverse
data patterns. The IDR is the cornerstone of self-
supervised learning (SSL) framework, introducing
a novel mechanism for generating input-label pairs

without requiring ground truth. The pretrained
model from Stage 2 is used for prediction in the first
iteration. The input data are the same band-limited
dataset used in Stage 2. The model outputs are treated
as pseudo-labels. A high-pass filter is the applied to
these outpurs to generate the corresponding inputs.
The model is trained for a single epoch with these
new input-label pairs. This process is repeated for
300 iterations. At each iteration, the updated model
from the previous step isused, and a new set of
input-label pairs is generated. Through this iterative
refinement, the model progressively improves its
capacity to reconstruct low-frequency content from
extrapolation from band-limited dataset. The learning
rate at this stage decays by a factor of 0.9 every 50
epochs.

After obtaining a robust backbone model
trained on the synthetic dataset, we applied it to
our real seismic marine dataset. The raw field data
underwent standard pre-processing to minimize noise
and enhance data quality. The pre-processing steps
included applying a low-pass filter with a cutoff
frequency below 10 Hz, a notch filter to remove
specific frequency components, and De-Multiple
processing to suppress multiple reflections. Following
these steps, the data were prepared according to the
procedure outlined in Stage 1, and the iterative data
refinement (IDR) process was repeated in the same
manner as previously implemented.

The implementation of training process was
performed on a system equipped with an NVIDIA
GeForce RTX 3060 GPU, an Intel Core 17 13th
Generation processor, and 64 GB of RAM, and it
leveraged the TensorFlow 2.0 Python framework.
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RESULT AND DISUCUSSION

Synthetic testing

We validate the workflow of self-supervised
learning (SSL) low-frequency extrapolation using
synthetic data. Figure 4a shows the original simulated
shot gather generated from the Marmoussi2 model,
while Figure 4b displays its corresponding frequency
spectrum. The model accuracy was evaluated by
predicting low-frequency components from input
data processed with different high-pass filter cutoff
frequencies.

Figure 5 illustrates the results for different high-
pass filter (HPF) cutoff frequencies, demonstrating
various test scenarios for the SSL prediction model
with varying degrees of missing low-frequency
content in the input data. The corresponding
predictions are presented in Figures 5b, Se, and 5h for
HPF cutoffs of 5, 10, and 15 Hz, respectively, while
the residuals computed as the difference between the
predicted data and the original shot data (Figure 4a)
are displayed in Figures 5c, 5f, and 5i for 5, 10, and
15 Hz, respectively. These results indicate that the
model accurately predicts the missing low-frequency
components when the input data lacks frequencies
below 5 Hz and 10 Hz. However, prediction error
increases, as reflected in higher residual amplitudes,
when a greater protion of the low-frequency band
is absent, particularly in the case of the 15 Hz HPF
input.

Origipal

0.0

Time (s)

50 100 150 200 250 300 350
Traces

Amplitude

To further verify both waveform reconstruction
and spectral band, a single trace was extracted
from the test shot data. Figure 6a compares the
original waveform with the predicted data derived
from inputs with varying degrees of missing low-
frequency content. The extrapolated waveform
closely matches the original, particularly for input
cutoff below 10 Hz. However, when low-frequency
information is firther reduced (i.e., cutoff at 10 Hz),
discrepancy between the predicted and original
waveforms gradually increases; nonetheless, phase
alignment remains nearly perfect. Overall, the
method reconstructs waveforms that are highly
consistent with the original data.

Since the cycle-skipping problem in Full
Waveform Inversion (FWI) primarily arises from
phase mismatches, the accurate phase reconstruction
demonstrated here suggests that cycle skipping can
be effectively minimized.

Figures 6b - 6d present the spectral analyses of
the original, input, and predicted data for HPF cutoffs
of 5 Hz, 10 Hz, and 15 Hz, respectively. As in the
waveform analysis, the spectral results confirm that
the SSL model successfully reconstructs missing
low-frequency content. In these Figures, the blue
line represents the original spectrum, the orange
line denotes the predicted spectrum, and the green
line indicates the input data spectrum. Notably, even
when the input data contain severely attenuated

N n
12

Mean Spectrum

0.2 +

0.0 A

0 10 20 30 40 50
Frequency [Hz]

Figure 4. (a) Synthetic shot gather generated from the Marmousi2 P-wave velocity model using a Ricker wavelet source

with a dominant frequency of 15 Hz. The reflectivity pattern demonstrates strong amplitude variations caused by complex

subsurface structures. (b) Corresponding mean amplitude spectrum of the shot gather shown in (a), illustrating the
frequency content centered around the dominant frequency of the source wavelet.
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low-frequency components, the model recovers
frequencies, even down to levels below 2 Hz. This
result underscores the accuracy, stability, and overall
reasonability of the proposed SSL low-frequency
extrapolation algorithm, demonstrating its robust
capability to reconstruct essential low-frequency
information from incomplete input data.

Figure 8a, 8d, and 8f show test shot datasets
derived from applying high-pass filters with cut-off
frequencies of 5 Hz, 10 Hz, and 15 Hz, respectively,
to the original seismic data. These filtered datasets

Input - HPF Cut-Off 5 Hz

50 100 150 200 250 300 350
Traces

Input - HPF Cut-Off 10 Hz

Input - HPF Cut-Off 15 Hz

Prediction

Prediction

Prediction

serve as inputs for our self-supervised learning (SSL)
model, and the corresponding prediction results are
displayed in Figures 8b, 8e, and 8g.

To assess the model accuracy, spectral analysis
on a single trace was conducted, as shown in Figure
9. The analysis demonstrates that the SSL model
effectively reconstructs energy at frequencies below
5 Hz, even though the input data primarily cover
frequencies above 7 Hz; Indicating its capability to
predict the spectrum in the missing low-frequency
range.

Original-Prediction

Original-Prediction

Original-Prediction

Figure 5. Results of testing low-frequency data. The model’s accuracy is evaluated by predicting low-frequency components

from input data with different high-pass filter (HPF) cutoff frequencies: (a) 5 Hz, (d) 10 Hz, and (g) 15 Hz. The corresponding

predictions obtained using the self-supervised learning (SSL) model are shown in (b) 5 Hz, (e) 10 Hz, and (h) 15 Hz. To

assess prediction quality, the residuals—computed as the difference between the predicted data and the original shot
data in Figure 4a—are displayed in (c) 5 Hz, (f) 10 Hz, and (i) 15 Hz.
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Figure 6. (a) Comparison between the original seismic trace and the predicted traces generated using input data filtered

with different high-pass filter (HPF) cutoff frequencies of 5, 10, and 15 Hz. The prediction accuracy decreases with higher

cutoff frequencies due to the loss of low-frequency components essential for waveform reconstruction. (b—d) Correspond-

ing amplitude spectra of the predicted traces for each HPF case, illustrating the spectral energy shift and attenuation
effects caused by different filtering levels.
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Figure 7. Real marine seismic data from the Asri Basin. (a) Band-limited shot gather used as the input data for low-frequency

prediction. (b) Mean amplitude spectrum of the band-limited data, showing a dominant frequency around 35-40 Hz with

an effective bandwidth between approximately 10 and 70 Hz, indicating the absence of low-frequency components (<10
Hz) to be reconstructed by the prediction model.
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Figure 8. (a), (d), and (f) present test shot datasets obtained by applying high-pass filters with cut-off frequencies of 5 Hz,

10 Hz, and 15 Hz, respectively, to the original seismic data. These filtered datasets serve as inputs to the self-supervised

learning (SSL) model, with the corresponding prediction results displayed in Figures 8(b), (e), and (g). In contrast, Figure
8(c) shows the full-band seismic data processed using conventional methods.

Furthermore, the energy spectrum of the data
predicted was compared by the SSL model with that
obtained using conventional methods, as illustrated
in Figures 9a—9c. This comparison reveals a strong
correlation between the two spectra, validating the
proposed approach. More importantly, the SSL. model
reconstructs the energy at very low frequencies
(below 5 Hz) more accurately, whereas conventional
methods tend to lose energy in this range. The
results discussed above validate that our SSL
model effectively reconstructs the low-frequency
components of the Asri Basin dataset. Moreover,
spectral analysis reveals that the model not only
accurately predicts low-frequency content but also
preserves the mid-to-high frequency information.
This performance underscores the advantage of the

real-data-driven approach: the SSL model extracts
comprehensive spectral information directly from
real seismic data, maintaining the original spectral
range. In contrast, models trained on synthetic data
characterized by a narrower spectral range often have
narrower spectral bandwidth, often show limited
performance in frequency reconstruction.

Despite the promising results, the proposed
approach has several limitations that warrant further
investigation. First, the self-supervised learning
(SSL) model addresses the input—output mapping as
a highly non-linear problem, making its performance
strongly dependent on the specific dataset used
during training. Due to constraints in the current
training tools, the available dataset is limited, which
restricts the model’s ability to generalize effectively

DOI org/10.29017/scog.v48i3.1748 | 75



Scientific Contributions Oil & Gas, Vol. 48. No. 3, October 2025: 67 - 79

400
- Conventional Methods
g 300 A ~—— Prediction
B == |Input Cut-Off 5 Hz
= 200 1 W | I
Q
£ 100 -
0 ] Ll | Ll 1 Ll L]
400
- Conventional Methods
g 300 - —— Prediction
2 === |nput Cut-Off 10 Hz
= 200 - v
g N
5 100 -
0 Ll T T T ] T ]
400
- Conventional Methods
_8 300 - —— Prediction
3 = |nput Cut-Off 15 Hz
= 200 A
g N
- ””WW
0 h T T T T T
0 5 10 15 25 30 35

Frequency [Hz]

Figure 9. Shows a comparative spectral analysis of field data from the Asri Basin. In each subplot, the spectral response

of a single trace is displayed using three lines: the blue line represents data reconstructed by conventional extended

frequency methods, the orange line shows the prediction by the SSL model, and the green line denotes the input data

processed with a specific low-frequency cut-off. Subplot (a) corresponds to a 5 Hz cut-off, subplot (b) to a 10 Hz cut-off,
and subplot (c) to a 15 Hz cut-off.

to other blind datasets. Expanding the training dataset
is therefore essential to enhance the robustness and
generalizability of the approach. Furthermore, the
model's resilience to the cycle-skipping problem; a
common challenge in full waveform inversion (FWI)
has not yet been fully validated. To thoroughly assess
the accuracy and robustness of our SSL model, it is
necessary to conduct additional experiments using
both synthetic and real seismic data from the Asri
Basin. Such evaluations will help determine how
well the model can maintain accurate frequency
reconstruction, particularly in challenging scenarios
where cycle skipping might occur.

Another limitation arises from the inherent noise
in real seismic datasets. Although noise-reduction
techniques were applied during preprocessing, we
have taken measures to minimize noise, residual
noise likely remains and may impact the robustness
and accuracy of the predictions. This residual noise
can introduce variability into the reconstructed
energy spectrum, ultimately influencing the overall
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performance of the model. Taken together, these
limitations introduce a degree of uncertainty into the
current predictions. The combined effects of dataset
dependency, potential cycle skipping, and residual
noise emphasize the need for further validation and
refinement. Addressing these challenges will be
critical to improving the reliability of the SSL model
and ensuring its applicability to a broader range of
real-world seismic data processing tasks.

CONCLUSION

In this study, we introduced a self-supervised
learning (SSL) model designed to reconstruct the
low-frequency components of seismic data, with
a specific focus on the Asri Basin dataset. Our
approach effectively preserves the full spectral
range, as demonstrated by spectral analyses that
reveal strong correlations between the energy spectra
predicted by the SSL model and those obtained via
conventional methods. Notably, the SSL model
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accurately reconstructs low-frequency energy
(below 5 Hz), addressing a common shortcoming in
conventional techniques that typically lose energy
in this range.

Despite these promising results, several
limitations remain. The performance of the SSL
model is highly dependent on the training dataset,
which is currently limited due to constraints in
available tools and data. This dataset dependency
raises concerns about the model’s generalizability to
other blind datasets. Furthermore, the issue of cycle
skipping a well-known challenge in full waveform
inversion requires additional validation through
experiments on both synthetic and real seismic data.
Finally, although preprocessing techniques were
applied to reduce noise in the real datasets, residual
noise may still affect the robustness and accuracy
of the model’s predictions. Overall, the findings
underscore the potential of SSL as a robust, real-
data-driven approach for seismic data reconstruction.
Future work should focus on expanding the
training dataset, systematically evaluating the
model performance against cycle skipping, and
mitigating the effects of residual noise. Addressing
these challenges will be crucial for enhancing the
reliability and applicability of SSL-based methods
in diverse seismic exploration scenarios.
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GLOSSARY OF TERMS

Symbol Description Unit

Adam Adaptive Moment -
Estimation optimizer used
to accelerate the training
process in deep learning.

A hydrocarbon basin -
located in the Java Sea,
Indonesia, and the focus

area of this case study.

Asri Basin

Band-limited Seismic data with a Hz
Data restricted frequency
bandwidth due to

acquisition limitations.

CNN A deep learning architecture —
(Convolutional based on convolution
Neural Network) operations, widely applied

in image and seismic data

processing.

Epoch One complete pass of the —
entire dataset through the
training process of a model.

FWI(Full A seismic inversion method —

Waveform that uses the full waveform

Inversion) to obtain a detailed

subsurface model.

HPF(High-Pass A filter that passes high- Hz
Filter) frequency components
while attenuating low-
frequency components.

IDR(Iterative A stage in SSL where —
Data input—label pairs are
Refinement) regenerated iteratively, and

the model is updated in
each iteration.

L2L (Less-Low- A self-supervised -
to-Low) framework for predicting
data with enhanced low-
frequency content from data
with reduced low-frequency
content.

LearningRate A parameter that controls —

(LR) the step size of weight
updates during model
training.

MAE (Mean A loss function measuring —

Absolute Error) the average absolute
difference between
predictions and labels.

Marmoussi2
Model

A synthetic seismic velocity m/s
model commonly used for
testing inversion methods.

Ricker Wavelet A type of synthetic seismic Hz
source wavelet
characterized by a dominant

frequency.
SSL(Self- A deep learning paradigm —
Supervised that generates pseudo-labels
Learning) from the data itself without
requiring manually labeled
datasets.
U-Net An encoder—decoder deep —

learning architecture with
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skip connections, applied in
segmentation and seismic
reconstruction tasks.
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