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ABSTRACT - The Asri Basin, located in the Java Sea, Indonesia, is a significant hydrocarbon province 
with regions that remain underexplored. The available legacy seismic data, however, are limited in quality, 
particularly due to their narrow frequency bandwidth and the absence of low-frequency components. This 
limitation poses a significant challenge for advanced seismic imaging techniques such as Full Waveform 
Inversion (FWI), which rely low-frequency data to generate accurate and reliable subsurface models. This 
study aims to reconstruct the missing low-frequency (<10 Hz) components from the band-limited seismic 
data to enhance the applicability of FWI. A real-data-driven, self-supervised learning approach for low-
frequency extrapolation is implemented to address this challenge. Using a modified U-Net architecture, the 
framework is trained directly on the available band-limited seismic data, eliminating the need for synthetic 
or labeled datasets. The self-supervised workflow employs a frequency-specific masking strategy that 
enables the model to learn and predict the missing low-frequency content from higher-frequency inputs. 
The results demonstrate that the proposed method effectively recovers low-frequency signals, achieving 
accurate reconstruction down to <5 Hz, reducing residual amplitudes compared to conventional methods, 
and preserving the mid-to-high frequency spectrum. This approach provides a promising solution for 
overcoming data limitations and mitigating cycle-skipping issues in FWI applications within the Asri Basin 
and comparable geological settings.
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INTRODUCTION
Seismic imaging serves as a fundamental 

technique in subsurface exploration and reservoir 
characterization, with Full Waveform Inversion 
(FWI) playing a crucial role in accurately estimating 
subsurface properties (Virieux & Operto 2009; 
Tarantola 1986). Low-frequency seismic data are 
particularly important in mitigating cycle skipping 
and enhancing the convergence of nonlinear 
inversion algorithms (Bunks et al., 1995). However, 
acquiring low-frequency signals is often constrained 
by the physical limitations of seismic sources and 
receivers, particularly in geologically complex 
environments. The absence of these low-frequency 
components can lead to non-uniqueness in the 
inversion process and reduce the resolution of the 
reconstructed subsurface models.

Traditional approaches to addressing the missing 
low-frequency problem include spectral broadening 
techniques and model-based extrapolation methods 
(Claerbout 1992). While these methods have 
achieved varying levels of success, they often rely 
on strong assumptions about the data or require 
significant computational resources, limiting their 
applicability in large-scale surveys. Frequency-
domain analyses, such as spectral decomposition 
using STFT and CWT, have also been applied in 
reservoir characterization, highlighting both their 
potential and limitations (Haris et al., 2019; Diria 
et al., 2021). In parallel, inversion strategies in 
alternative domains, such as ray parameter inversion, 
have been proposed to improve seismic imaging and 
impedance estimation (Triyoso et al., 2024).

Recent advances in machine learning, particularly 
deep learning, offer promising alternatives for data 
reconstruction and enhancement (Yu & Ma 2021). In 
recent years, convolutional neural networks (CNNs) 
have demonstrated remarkable performance in 
various imaging tasks, ranging from image denoising 
to super-resolution (Jiantao et al., 2021; Sun et al., 
2022). Applying deep learning to seismic processing 
therefore holds significant potential, particularly 
for low-frequency extrapolation. For example, 
Sun and Demanet (2018, 2020) employed CNNs 
to reconstruct low-frequency components directly 
from band-limited data using a supervised, trace-by-
trace strategy in the time domain. Other researchers 
have refined these methodologies to enhance low-
frequency extrapolation performance (Sigalingging 
et al., 2021; Sigalingging et al., 2024; Winardhi et 
al., 2024). Despite promising results on synthetic 

datasets, extending these approaches to field data 
remains challenging due to complexities inherent in 
real-world signals. 

Various strategies have been proposed to improve 
robustness in field applications. Notably, Fabien-
Ouellet (2020) has demonstrated promising results 
in seismic low-frequency prediction and denoising 
across both synthetic and real datasets. Similarly, 
Araya-Polo et al. (2018) have advanced data-driven 
techniques for low-frequency reconstruction, 
underscoring the evolving nature of this research 
field. Collectively, these contributions highlight 
the importance of developing robust deep learning 
frameworks capable of generalizing from synthetic 
models to the complexities of real seismic data.

Among such frameworks, the U-Net, originally 
developed for biomedical image segmentation 
(Ronneberger et al., 2015), has proven highly 
effective in tasks requiring precise localization 
and contextual understanding. Its encoder-decoder 
structure, combined with skip connections, enables 
efficient feature extraction and reconstruction even 
when training data are limited. In seismic imaging, 
U-Net-based approaches have recently been explored 
for noise attenuation and interpolation (Fang et al., 
2020). However, most of these methods rely on 
supervised learning, which requires large labelled 
datasets that are often unavailable or costly to 
generate in the seismic domain.

To address these challenges, Cheng et al. (2024) 
proposed a self-supervised learning methodology 
that eliminates the need for data, enabling neural 
networks to be trained directly on real seismic 
dataset. This paradigm effectively bridges the 
generalization gap often encountered in supervised 
learning techniques, which are typically trained on 
synthetic data.

In this study, self-supervised learning methods 
are applied to a 2D marine seismic line from the 
Asri Basin, Java Sea, Indonesia. The Asri Basin is a 
key hydrocarbon province, with reservoirs primarily 
originating from syn-rift deposits (Ralanarko et al., 
2021). The geological evolution of this basin has 
been shaped by three major tectonic phases: (1) Rift 
Initiation during the pre- to early Oligocene, (2) Syn-
Rift from the early to late Oligocene, and (3) Post-
Rift (Sukanto et al. 1998). These tectonic processes 
have produced complex structural configurations, 
necessitating advanced seismic imaging techniques 
such as FWI for accurate subsurface characterization. 
However, legacy seismic data from the Asri Basin 
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often suffer from poor quality due to a band-limited 
frequency spectrum, where low frequencies are 
missing as a result of acquisition constraints. This 
deficiency poses significant challenges for seismic 
imaging, particularly for FWI, which relies on a 
broad frequency range to achieve high-resolution 
subsurface models. To overcome this limitations, 
this study focuses on reconstructing the missing 
low-frequency components using self-supervised 
deep learning techniques. The reconstructed low-
frequency data serve as a critical preparatory step for 
enhanced seismic imaging, ultimately improving the 
outcomes of reprocessing legacy seismic data from 
the Asri Basin.

METHODOLOGY 

Self-supervised learning
Self-supervised learning (SSL) for low-frequency 

seismic extrapolation, as proposed by Cheng et al. 
(2024), utilizes the classical U-Net architecture 
(Ronneberger et al., 2015). A key advantage of SSL is 
its ability to generate training pairs (inputs and labels) 
directly from observed data, eliminating the need 
for manually labeled datasets. This approach draws 
inspiration the Noisier2Noise method in the machine 
learning community (Moran et al., 2020). In the 
Noisier2Noise framework, the training process relies 
solely on the original noisy observations: additional 
noise is deliberately added to create a noisier dataset, 
while the original noisy data serve as pseudo-labels. 
This strategy enables the neural network to learn 
noise characteristics and reconstruct the desired 
signal without requiring a clean reference data.

Following this principle, LessLow-to-Low 
(L2L) framework is introduced for low-frequency 
prediction. In L2L, seismic data with reduced low-
frequency content are used as input to predict data 
with relatively richer low-frequency content. The 
method assumes that available seismic waveform 
data, although lacking sufficient low-frequency 
energy due to acquisition constraints, can still act 
as pseudo-labels. These waveforms typically lack 
sufficient low-frequency content due to acquisition 
constraints. To create the input for the network, a 
high-pass filter to the original data is applied, thereby, 
further attenuating the already diminished low-
frequency components. In this setup, the high-pass 
filtered data, referred to as the “less low” dataset, 
serves as the input, while the original waveforms 
(with relatively more low-frequency content) act as 

the pseudo-labels. Thus, the L2L framework operates 
as a supervised learning proses in which input-label 
pairs are derived from the data itself, exemplifying 
the concept of self-supervised learning. This allows 
the method to be applied directly to real seismic 
datasets without requiring external labels. SSL for 
low-frequency extrapolation primarily consists of 
two components: a warm-up phase and iterative data 
refinement (IDR). The warm-up phase, supervised 
learning is performed on  synthetic datasets generated 
from simulated subsurface models. Inputs are created 
by applying a high-pass filter to the synthetic data, 
while the unfiltered data serve as targets. This 
‘less-to-low” dataset is used to pretrain the model 
for a set number of epochs, producing an initial 
backbone model. In the IDR phase, the pretrain 
model is iteratively refined using field seismic data. 
Predictions from model serve as pseudo-labels while 
corresponding inputs are generated by applying 
a high-pass filter to those predictions. In the first 
iteration, the warm-up model is used to predict 
the original seismic data. At each iteration, the 
model is trained for only one epoch, after which the 
updated model replaces the previous one, ensuring 
progressive refinement. 

Deep learning architecture
The SSL framework introduced by Chen 

et al. (2024) for low-frequency tasks utilizes a 
conventional U-Net architecture. In this study, 
we adapt and modify the U-Net to better address 
seismic los-frequency extrapolation. The details of 
the modified architecture are illustrated in Figure 1.  
The model consists of five scales, with 2×2 down-
sampling and 2×2 up-sampling operations. Each 
block contains two consecutive convolutional layer, 
each with a 3×3 kernel and Leaky Rectified Linear 
Unit (Leaky ReLu) activation. Batch normalization 
is not applied. The number of filters in both the 
encoder and decoder is set to 96, with the final layer 
reduced to 48 filers. The complete filter distribution 
is depicted in Figure 1.

To train the network, a hybrid loss function that 
combines data loss and amplitude spectrum loss was 
employed. The hybrid loss function is formulated 
using the Mean Absolute Error (MAE) and can be 
expressed as:

(1)𝐿𝐿����𝐿𝐿� �� �� � �
�
∑ |𝐿𝐿� � ��|�
���  (1) 

 where     represents the label data, and     denotes the 
output of the models.

L O 
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Training prosedur
As described earlier, the model is trained in two 

stages: Warm-Up and Iterative Data Refinement 
(IDR). The detailed workflow is presented in Figure 
2 and described as follows:

Stage 1 preparation of dataset: 
In this stage, we generate a synthetic dataset 

using the Marmoussi2 velocity models (Figure 3). 
The simulation parameters are provided in Table 

1. The first receiver is positioned at 25 m from 
the left boundary of the model, while the first 
shot is located at 0 m. Receiver positions remain 
fixed for all shot locations. The data simulation is 
conducted using the Julia programming language 
with the JUDI framework (Witte et al. 2019). After 
generating the shot data, the data are randomly 
cropped into patches of 128×128 pixels, resulting 
in a total of 9,050 image samples.

Figure 1. The deep-learning U-Net architecture used in this study.

 

Figure 2. Workflow of self-supervised learning for low-frequency extrapolation.
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Figure 3. Marmousi2 P-wave velocity model used to generate synthetic shot gathers. The model  exhibits strong lateral 
and vertical velocity variations representing complex geological structures such as faults, anticlines, and stratigraphic 
layering. These heterogeneities make it a standard benchmark model for testing seismic imaging and inversion algorithms.

 

Stage 2 warm-up stage: 
The image patches from Stage 1 are used for 

initial training. The label data consist of original 
image patches, while the input data are generated 
by applying a high-pass filtering with a randomly 
selected cutoff frequency between from 5 to 30 
Hz, producing band-limited inputs. The model is 
trained for 150 epochs, using a decaying learning 
rate (LR) strategy: the initial LR is set to 0.001 and 
decays by 0.9 every 30 iterations. Optimization is 
performed with the Adam optimizer and a batch 
size of 64. The optimal model obtained at the 
end of this stage is carried forward to stage 3. 

Table 1. Simulation parameter to generate synthetic data.

 
Parameters Values

 Velocity Models 2D Marmoussi2
 Grid Spacing 10 x 10 (m)
 Grid Number 920 x 300
 Number Receiver 361
 Number Shot 181
 Receiver Spacing 25 (m)
 Shot Spacing 50 (m)
 Sampling time 0.002 (s)
 Time length 3 (s)
 Wavelet Ricker
 Source Frequency 15 Hz

 
Stage 3 iterative data refinement (IDR)

At this stage, synthetic data are further used to 
ensure that the model generalizes across diverse 
data patterns. The IDR is the cornerstone of self-
supervised learning (SSL) framework, introducing 
a novel mechanism for generating input-label pairs 

without requiring ground truth. The pretrained 
model from Stage 2 is used for prediction in the first 
iteration. The input data are the same band-limited 
dataset used in Stage 2. The model outputs are treated 
as pseudo-labels. A high-pass filter is the applied to 
these outpurs to generate the corresponding inputs. 
The model is trained for a single epoch with these 
new input-label pairs.  This process is repeated for 
300 iterations. At each iteration, the updated model 
from the previous step isused, and a new set of 
input-label pairs is generated.  Through this iterative 
refinement, the model progressively improves its 
capacity to reconstruct  low-frequency content from 
extrapolation from band-limited dataset. The learning 
rate at this stage decays by a factor of 0.9 every 50 
epochs.

After obtaining a robust backbone model 
trained on the synthetic dataset, we applied it to 
our real seismic marine dataset. The raw field data 
underwent standard pre-processing to minimize noise 
and enhance data quality. The pre-processing steps 
included applying a low-pass filter with a cutoff 
frequency below 10 Hz, a notch filter to remove 
specific frequency components, and De-Multiple 
processing to suppress multiple reflections. Following 
these steps, the data were prepared according to the 
procedure outlined in Stage 1, and the iterative data 
refinement (IDR) process was repeated in the same 
manner as previously implemented.

The implementation of training process was 
performed on a system equipped with an NVIDIA 
GeForce RTX 3060 GPU, an Intel Core i7 13th 
Generation processor, and 64 GB of RAM, and it 
leveraged the TensorFlow 2.0 Python framework.
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RESULT AND DISUCUSSION

Synthetic testing
We validate the workflow of self-supervised 

learning (SSL) low-frequency extrapolation using 
synthetic data. Figure 4a shows the original simulated 
shot gather generated from the Marmoussi2 model, 
while Figure 4b displays its corresponding frequency 
spectrum. The model accuracy was evaluated by 
predicting low-frequency components from input 
data processed with different high-pass filter cutoff 
frequencies.  

Figure 5 illustrates the results for different high-
pass filter (HPF) cutoff frequencies, demonstrating 
various test scenarios for the SSL prediction model 
with varying degrees of missing low-frequency 
content in the input data. The corresponding 
predictions are presented in Figures 5b, 5e, and 5h for 
HPF cutoffs of 5, 10, and 15 Hz, respectively, while 
the residuals computed as the difference between the 
predicted data and the original shot data (Figure 4a) 
are displayed in Figures 5c, 5f, and 5i for 5, 10, and 
15 Hz, respectively. These results indicate that the 
model accurately predicts the missing low-frequency 
components when the input data lacks frequencies 
below 5 Hz and 10 Hz. However, prediction error 
increases, as reflected in higher residual amplitudes, 
when a greater protion of the low-frequency band 
is absent, particularly in the case of the 15 Hz HPF 
input.

To further verify both waveform reconstruction 
and spectral band, a single trace was extracted 
from the test shot data. Figure 6a compares the 
original waveform with the predicted data derived 
from inputs with varying degrees of missing low-
frequency content. The extrapolated waveform 
closely matches the original, particularly for input 
cutoff below 10 Hz. However, when low-frequency 
information is firther reduced (i.e., cutoff at 10 Hz), 
discrepancy between the predicted and original 
waveforms gradually increases; nonetheless, phase 
alignment remains nearly perfect. Overall, the 
method reconstructs waveforms that are highly 
consistent with the original data. 

Since the cycle-skipping problem in Full 
Waveform Inversion (FWI) primarily arises from 
phase mismatches, the accurate phase reconstruction 
demonstrated here suggests that cycle skipping can 
be effectively minimized.

Figures 6b - 6d present the spectral analyses of 
the original, input, and predicted data for HPF cutoffs 
of 5 Hz, 10 Hz, and 15 Hz, respectively. As in the 
waveform analysis, the spectral results confirm that 
the SSL model successfully reconstructs missing 
low-frequency content. In these Figures, the blue 
line represents the original spectrum, the orange 
line denotes the predicted spectrum, and the green 
line indicates the input data spectrum. Notably, even 
when the input data contain severely attenuated 

Figure 4. (a) Synthetic shot gather generated from the Marmousi2 P-wave velocity model using a Ricker wavelet source 
with a dominant frequency of 15 Hz. The reflectivity pattern demonstrates strong amplitude variations caused by complex 
subsurface structures. (b) Corresponding mean amplitude spectrum of the shot gather shown in (a), illustrating the 

frequency content centered around the dominant frequency of the source wavelet.

 

Original Mean Spectrum
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low-frequency components, the model recovers 
frequencies, even down to levels below 2 Hz. This 
result underscores the accuracy, stability, and overall 
reasonability of the proposed SSL low-frequency 
extrapolation algorithm, demonstrating its robust 
capability to reconstruct essential low-frequency 
information from incomplete input data.

Figure 8a, 8d, and 8f show test shot datasets 
derived from applying high-pass filters with cut-off 
frequencies of 5 Hz, 10 Hz, and 15 Hz, respectively, 
to the original seismic data. These filtered datasets 

Figure 5. Results of testing low-frequency data. The model’s accuracy is evaluated by predicting low-frequency components 
from input data with different high-pass filter (HPF) cutoff frequencies: (a) 5 Hz, (d) 10 Hz, and (g) 15 Hz. The corresponding 
predictions obtained using the self-supervised learning (SSL) model are shown in (b) 5 Hz, (e) 10 Hz, and (h) 15 Hz. To 
assess prediction quality, the residuals—computed as the difference between the predicted data and the original shot 

data in Figure 4a—are displayed in (c) 5 Hz, (f) 10 Hz, and (i) 15 Hz.

 

serve as inputs for our self-supervised learning (SSL) 
model, and the corresponding prediction results are 
displayed in Figures 8b, 8e, and 8g.

To assess the model accuracy, spectral analysis 
on a single trace was conducted, as shown in Figure 
9. The analysis demonstrates that the SSL model 
effectively reconstructs energy at frequencies below 
5 Hz, even though the input data primarily cover 
frequencies above 7 Hz; Indicating its capability to 
predict the spectrum in the missing low-frequency 
range.
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Figure 6. (a) Comparison between the original seismic trace and the predicted traces generated using input data filtered 
with different high-pass filter (HPF) cutoff frequencies of 5, 10, and 15 Hz. The prediction accuracy decreases with higher 
cutoff frequencies due to the loss of low-frequency components essential for waveform reconstruction. (b–d) Correspond-
ing amplitude spectra of the predicted traces for each HPF case, illustrating the spectral energy shift and attenuation 

effects caused by different filtering levels.

 

Time [s] Frequency [Hz]

 

Traces Frequency [Hz]

Band-Limited Data Mean Spectrum

Figure 7. Real marine seismic data from the Asri Basin. (a) Band-limited shot gather used as the input data for low-frequency 
prediction. (b) Mean amplitude spectrum of the band-limited data, showing a dominant frequency around 35–40 Hz with 
an effective bandwidth between approximately 10 and 70 Hz, indicating the absence of low-frequency components (<10 

Hz) to be reconstructed by the prediction model.
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Figure 8. (a), (d), and (f) present test shot datasets obtained by applying high-pass filters with cut-off frequencies of 5 Hz, 
10 Hz, and 15 Hz, respectively, to the original seismic data. These filtered datasets serve as inputs to the self-supervised 
learning (SSL) model, with the corresponding prediction results displayed in Figures 8(b), (e), and (g). In contrast, Figure 

8(c) shows the full-band seismic data processed using conventional methods.

 

Ti
m

e 
(s

)

Traces

Furthermore, the energy spectrum of the data 
predicted was compared by the SSL model with that 
obtained using conventional methods, as illustrated 
in Figures 9a–9c. This comparison reveals a strong 
correlation between the two spectra, validating the 
proposed approach. More importantly, the SSL model 
reconstructs the energy at very low frequencies 
(below 5 Hz) more accurately, whereas conventional 
methods tend to lose energy in this range.  The 
results discussed above validate that our SSL 
model effectively reconstructs the low-frequency 
components of the Asri Basin dataset. Moreover, 
spectral analysis reveals that the model not only 
accurately predicts low-frequency content but also 
preserves the mid-to-high frequency information. 
This performance underscores the advantage of the 

real-data-driven approach: the SSL model extracts 
comprehensive spectral information directly from 
real seismic data, maintaining the original spectral 
range. In contrast, models trained on synthetic data 
characterized by a narrower spectral range often have 
narrower spectral bandwidth, often show limited 
performance in  frequency reconstruction. 

Despite the promising results, the proposed 
approach has several limitations that warrant further 
investigation. First, the self-supervised learning 
(SSL) model addresses the input–output mapping as 
a highly non-linear problem, making its performance 
strongly dependent on the specific dataset used 
during training. Due to constraints in the current 
training tools, the available dataset is limited, which 
restricts the model’s ability to generalize effectively 
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to other blind datasets. Expanding the training dataset 
is therefore essential to enhance the robustness and 
generalizability of the approach. Furthermore, the 
model's resilience to the cycle-skipping problem; a 
common challenge in full waveform inversion (FWI) 
has not yet been fully validated. To thoroughly assess 
the accuracy and robustness of our SSL model, it is 
necessary to conduct additional experiments using 
both synthetic and real seismic data from the Asri 
Basin. Such evaluations will help determine how 
well the model can maintain accurate frequency 
reconstruction, particularly in challenging scenarios 
where cycle skipping might occur.

Another limitation arises from the inherent noise 
in real seismic datasets. Although noise-reduction 
techniques were applied during preprocessing, we 
have taken measures to minimize noise, residual 
noise likely remains and may impact the robustness 
and accuracy of the predictions. This residual noise 
can introduce variability into the reconstructed 
energy spectrum, ultimately influencing the overall 

performance of the model. Taken together, these 
limitations introduce a degree of uncertainty into the 
current predictions. The combined effects of dataset 
dependency, potential cycle skipping, and residual 
noise emphasize the need for further validation and 
refinement. Addressing these challenges will be 
critical to improving the reliability of the SSL model 
and ensuring its applicability to a broader range of 
real-world seismic data processing tasks.

CONCLUSION
In this study, we introduced a self-supervised 

learning (SSL) model designed to reconstruct the 
low-frequency components of seismic data, with 
a specific focus on the Asri Basin dataset. Our 
approach effectively preserves the full spectral 
range, as demonstrated by spectral analyses that 
reveal strong correlations between the energy spectra 
predicted by the SSL model and those obtained via 
conventional methods. Notably, the SSL model 

Figure 9. Shows a comparative spectral analysis of field data from the Asri Basin. In each subplot, the spectral response 
of a single trace is displayed using three lines: the blue line represents data reconstructed by conventional extended 
frequency methods, the orange line shows the prediction by the SSL model, and the green line denotes the input data 
processed with a specific low-frequency cut-off. Subplot (a) corresponds to a 5 Hz cut-off, subplot (b) to a 10 Hz cut-off, 

and subplot (c) to a 15 Hz cut-off.

 

Frequency [Hz]
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GLOSSARY OF TERMS 

 

 
Symbol Description Unit 

 Adam Adaptive Moment 
Estimation optimizer used 
to accelerate the training 
process in deep learning.

– 

 Asri Basin A hydrocarbon basin 
located in the Java Sea, 
Indonesia, and the focus 
area of this case study.

– 

 Band-limited 
Data 

Seismic data with a 
restricted frequency 
bandwidth due to 
acquisition limitations.

Hz 

 CNN 
(Convolutional 
Neural Network) 

A deep learning architecture 
based on convolution 
operations, widely applied 
in image and seismic data 
processing.

– 

 Epoch One complete pass of the 
entire dataset through the 
training process of a model.

– 

 FWI(Full 
Waveform 
Inversion) 

A seismic inversion method 
that uses the full waveform 
to obtain a detailed 
subsurface model.

– 

 HPF(High-Pass 
Filter) 

A filter that passes high-
frequency components 
while attenuating low-
frequency components.

Hz 

 IDR(Iterative 
Data 
Refinement) 

A stage in SSL where 
input–label pairs are 
regenerated iteratively, and 
the model is updated in 
each iteration.

– 

 L2L (Less-Low-
to-Low) 

A self-supervised 
framework for predicting 
data with enhanced low-
frequency content from data 
with reduced low-frequency 
content.

– 

 LearningRate 
(LR) 

A parameter that controls 
the step size of weight 
updates during model 
training.

– 

 MAE (Mean 
Absolute Error) 

A loss function measuring 
the average absolute 
difference between 
predictions and labels.

– 

 Marmoussi2 
Model 

A synthetic seismic velocity 
model commonly used for 
testing inversion methods.

m/s 

 Ricker Wavelet A type of synthetic seismic 
source wavelet 
characterized by a dominant 
frequency.

Hz 

 SSL(Self-
Supervised 
Learning) 

A deep learning paradigm 
that generates pseudo-labels 
from the data itself without 
requiring manually labeled 
datasets.

– 

 U-Net An encoder–decoder deep 
learning architecture with 
skip connections, applied in 
segmentation and seismic 
reconstruction tasks.

– 
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process in deep learning.
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Waveform 
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to obtain a detailed 
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while attenuating low-
frequency components.
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 IDR(Iterative 
Data 
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A stage in SSL where 
input–label pairs are 
regenerated iteratively, and 
the model is updated in 
each iteration.

– 

 L2L (Less-Low-
to-Low) 

A self-supervised 
framework for predicting 
data with enhanced low-
frequency content from data 
with reduced low-frequency 
content.

– 

 LearningRate 
(LR) 

A parameter that controls 
the step size of weight 
updates during model 
training.

– 

 MAE (Mean 
Absolute Error) 

A loss function measuring 
the average absolute 
difference between 
predictions and labels.

– 

 Marmoussi2 
Model 

A synthetic seismic velocity 
model commonly used for 
testing inversion methods.

m/s 

 Ricker Wavelet A type of synthetic seismic 
source wavelet 
characterized by a dominant 
frequency.

Hz 

 SSL(Self-
Supervised 
Learning) 

A deep learning paradigm 
that generates pseudo-labels 
from the data itself without 
requiring manually labeled 
datasets.

– 

 U-Net An encoder–decoder deep 
learning architecture with 
skip connections, applied in 
segmentation and seismic 
reconstruction tasks.

– 

accurately reconstructs low-frequency energy 
(below 5 Hz), addressing a common shortcoming in 
conventional techniques that typically lose energy 
in this range.

Despite these promising results, several 
limitations remain. The performance of the SSL 
model is highly dependent on the training dataset, 
which is currently limited due to constraints in 
available tools and data. This dataset dependency 
raises concerns about the model’s generalizability to 
other blind datasets. Furthermore, the issue of cycle 
skipping a well-known challenge in full waveform 
inversion requires additional validation through 
experiments on both synthetic and real seismic data. 
Finally, although preprocessing techniques were 
applied to reduce noise in the real datasets, residual 
noise may still affect the robustness and accuracy 
of the model’s predictions. Overall, the findings 
underscore the potential of SSL as a robust, real-
data-driven approach for seismic data reconstruction. 
Future work should focus on expanding the 
training dataset, systematically evaluating the 
model performance against cycle skipping, and 
mitigating the effects of residual noise. Addressing 
these challenges will be crucial for enhancing the 
reliability and applicability of SSL-based methods 
in diverse seismic exploration scenarios.
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