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ABSTRACT - As oil and gas fields mature, the volume of produced water can increase substantially, often 
exceeding 90% of total production. This water cannot be directly discharged or reused due to harmful 
contaminants that pose considerable environmental risks. One major challenge is the absence of efficient, 
eco-friendly, and cost-effective filtration media for its treatment. This study aimed to develop and assess an 
alternative adsorbent derived from jenitri seeds, chemically activated with potassium hydroxide (KOH) at 
controlled temperatures. The primary goal was to identify a more effective and sustainable adsorbent than 
those currently used in oilfield operations. The methodology involved the preparation of this adsorbent, Its 
physicochemical characterization included bulk density measurement, scanning electron microscopy (SEM), 
and Fourier transform infrared spectroscopy (FTIR) analyses, along with performance testing through 
filtration, benchmarked against natural adsorbents such as candlenut and walnut. The KOH-activated jenitri 
demonstrated superior pollutant removal performance, primarily due to enhanced porosity and surface area 
resulting from the activation process. It exhibited the lowest bulk density (0.6 g/mL), an optimal porous 
structure as revealed by SEM, and the presence of active functional groups such as –OH, C=O, and C–O, 
identified through FTIR analysis. In filtration tests, KOH-activated jenitri effectively reduced total dissolved 
solids (TDS) to 600 mg/L and turbidity to 100–200 nephelometric turbidity units (NTU), outperforming 
natural jenitri, candlenut, and walnut, whose limited porosity contributed to lower adsorption efficiency
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INTRODUCTION
The management of produced water is a distinct 

and complex process, separate from oil and gas 
extraction, and represents a significant challenge 
for the industry (Klemz et al. 2021; Liu et al. 2021). 
Produced water refers to water that is brought to the 
surface along with oil and gas from the reservoir. 
It is the largest waste stream generated in oilfield 
operations and frequently exceeds environmental 
quality standards (Danforth et al. 2020)(Danforth 
et al. 2019)(McLaughlin et al. 2020). As oil and 
gas fields mature, the volume of produced water 
can rise dramatically, often surpassing 90% of total 
production, thus making its effective treatment 
increasingly critical (Shang et al., 2020)(Al‐Rubaye 
et al., 2023)(Yuliusman et al. 2017).

Produced fluids refer to water generated during oil 
and gas production that cannot be directly discharged 
or reused (Fakhru’l-Razi et al. 2009)(Andhika et al. 
2024). The presence of contaminants in produced 
water has become a growing global concern due 
to their potentially harmful environmental effects 
(Ganat et al., 2020)(Afdhol et al. 2024). In response, 
the Indonesian government has implemented strict 
regulations governing the treatment and disposal 
of produced water (Iihqgl et al. 2019; Afdhol et al. 
2023). One of the primary challenges in treating 
produced water is the removal of residual oil that 
remains after the oil–water separation process, 
along with elevated concentrations of salts and 
acids. Chemical additives are often used to enhance 
the separation of oil from water by facilitating 
mechanical separation (Tjuwati Makmur 2013). 
Nevertheless, even after treatment, produced water 
typically contains oil concentrations ranging from 
10 to 40 ppm at the point of discharge. 

The materials used in this study include 
candlenut seeds and jenitri seeds, both chemically 
activated with potassium hydroxide (KOH). 
Filtration tests were carried out using formation 
water samples obtained from Field X. The research 

methodology included the preparation of adsorbents, 
their physicochemical characterization, and filtration 
tests conducted at a controlled temperature. 

The primary objective of this study was to 
identify and compare existing oilfield adsorbents with 
those derived from jenitri seeds. This research aimed 
to explore the potential of jenitri seeds as a viable 
alternative to commonly used oilfield adsorbents, 
thereby reducing reliance on imported walnut-based 
materials. Additionally, the study seeks to ensure that 
treated produced water meets environmental quality 
standards before being reinjected into reservoirs or 
discharged into surface water bodies.

METHODOLOGY
The experiment was conducted by first activating 

the samples, followed by characterization tests on 
each sample, and finally, performing filtration tests.

Adsorbent production
The jenitri seeds were first crushed, as illustrated 

in Figure 1, and then sieved to achieve a uniform 
particle size using a mesh 16 screen. Once uniformity 
was ensured, the seeds were oven-dried for 1 h to 
eliminate any moisture. This study conducted testing 
on both oven-dried and chemically activated samples. 
Following the drying process, chemical activation 
was performed using a potassium hydroxide (KOH) 
solution for 1 h (Okman et al. 2014; Kane et al., 
2016; Yuliusman, Afdhol, & Sanal 2018; Afdhol et 
al. 2024; Perdana et al. 2023; Kathi et al. 2024;  and 
Yuliusman et al. 2018).

The activated jenitri seeds were thoroughly 
washed until a neutral pH was achieved, ensuring 
that residual chemicals from the activation process 
would not contaminate the produced water during 
filtration. Maintaining a neutral pH in the filtration 
medium is essential to prevent contamination. Once 
a neutral pH was confirmed, the samples were oven-
dried prior to further testing.
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Sample characterization 

Bulk density
In this study, bulk density characterization 

tests were performed to evaluate the suitability of 
jenitri seed as a filtration medium, with a focus 
on its adsorption capacity (A.K. Nayak & Pal 
2021) citric and tartaric acids. The carboxylic 
acid-modified OAES materials were used for the 
removal of hazardous gentian violet (GV. Bulk 
density measurements indicate the amount of 
material that can occupy a given volume, offering 
valuable insights into the material’s porosity (Zhao 
et al. 2021). A higher bulk density suggests fewer 
pore spaces, which may negatively impact filtration 
efficiency (Sharma & Yortsos 1987).

The bulk density test was conducted using jenitri 
seeds as the test material. The procedure involved 
placing the seeds into a graduated cylinder and 
recording the initial volume. The cylinder was then 
subjected to tapping using a tapped density meter. 
Two tests were performed in this study one after 
500 taps and another after 1,250 taps. Following 
each test, the final volume of the jenitri seeds was 
measured. To ensure consistency and accuracy, the 
difference in volume between the 500- and 1,250-
tap measurements was required to remain within a 
threshold of two units.

The bulk density  was calculated using the 
following equation:

FTIR
FTIR Fourier transform infrared spectroscopy 

(FTIR) is an analytical technique used to identify 
and analyze the chemical structure of various 
sample types, including solids, liquids, and gases 
(Ghazali & Azhar 2023)(Nandiyanto et al. 2019). The 
technique works by exposing the sample to infrared 
radiation, which induces molecular vibrations at 
specific frequencies (Berthomieu & Hienerwadel 
2009; Nagabalasubramanian & Periandy. 2010). 
Different types of chemical bonds absorb radiation 
at characteristic wavelengths, producing a unique 
spectrum often referred to as the “molecular 
fingerprint” (Nandiyanto et al. 2022; Movasaghi et 
al. 2008). 

SEM
Scanning electron microscopy (SEM) is a 

microscopy technique that uses electron scanning 
to capture high-resolution images of a sample’s 
surface (Inkson 2016). In this process, a finely 
focused electron beam is directed at the sample’s 
surface, generating secondary signals such as X-rays 
and secondary electrons (Koga et al. 2021; Cretu 
et al. 2015). These signals are then processed to 
create images that provide insights into the sample’s 
topography and chemical composition. SEM-
based morphological analysis can be performed at 
micrometer to nanometer scales, offering detailed 
information on surface structure, particle size, and 
shape distribution (Hochstrasser et al. 2021; Kim et 
al. 2020).

Filtration tests
Filtration tests are conducted to ensure that 

treated produced water meets environmental quality 
standards (Halim & Fatah 2023). The primary goal 

Figure 1
Crushing jenitri
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of the filtration process is to remove fine particles 
and residual oil from the produced water.

The process begins by measuring the turbidity 
level of the produced water sample. The water is then 
heated to 40°C and directed into a cooling tube before 
passing through a filtration funnel filled with jenitri 
seed media. As the water flows through the jenitri-
based filter, it captures free particles and residual oil.

After passing through the filter, the water 
is collected for turbidity measurement to assess 
the water quality before and after filtration. A 
turbidimeter is used to measure nephelometric 
turbidity units (NTU), providing a quantitative 
evaluation of the filtration efficiency.

The total dissolved solids (TDS) are calculated 
using the following equation:

 

 The turbidity measurement using a turbidimeter 
is calculated using the following equation:
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RESULT AND DISCUSSION

Bulk density characterization 
As shown in Figure 2, the bulk density test 

results, obtained using the MM-0101 tapped density 
meter, revealed the bulk density of four types of 
bioadsorbents—candlenut (KMR), walnut (WN), 
jenitri (JNT), and jenitri treated with KOH (JNT + 
K). Candlenut exhibited the highest bulk density, 
approaching 0.75 g/mL, followed by walnut at 
approximately 0.7 g/mL, jenitri at approximately 
0.65 g/mL, and then jenitri + KOH at 0.6 g/mL. 
The higher bulk density values of candlenut and 
walnut suggest a denser particle structure, meaning 
these materials contain more mass per unit volume. 
Adsorbents with higher bulk densities typically 
offer greater physical durability and the ability to 
absorb more material in a given space, making them 
suitable for applications requiring storage efficiency 
(Kunowsky et al., 2013). In contrast, jenitri and jenitri 
+ KOH, which have lower bulk densities , display 
a more porous structure, especially after treatment 
with KOH. Chemical activation with KOH enhances 
the porosity and surface area of the adsorbent, 
which can considerably improve its capacity to 

adsorb pollutants such as heavy metals and organic 
compounds (Qu et al. 2020). The increased porosity 
provides more surface contact points for adsorbed 
substances (Prarat et al. 2019). Although a lower 
bulk density may reduce the material’s physical 
compactness, the enhanced porosity can considerably 
improve its adsorption performance, positioning 
jenitri + KOH as a promising alternative for pollutant 
removal applications.

Functionally, adsorbents with high bulk density, 
such as candlenut, are better suited for applications 
that require storage of solid material within limited 
volumes (Kunowsky et al. 2013). In contrast, 
adsorbents with low bulk density and high porosity, 
such as jenitri + KOH, are more effective for filtration 
and pollutant absorption in liquids or gases, as they 
offer a larger surface area for adsorption (Zhao, 
Ma, et al. 2020). The balance between bulk density 
and porosity plays a crucial role in determining the 
efficiency and performance of an adsorbent in various 
environmental applications.

FTIR Results
As shown in Figure 3, the FTIR results, obtained 

using the IR Prestige-21 Shimadzu, revealed 
absorption peaks on bioadsorbents from candlenut, 
indicating the presence of specific functional groups 
on the adsorbent surface. The absorption peak at 
approximately 3,400–3,200 cm⁻¹ corresponds to 
hydroxyl (–OH) groups, which are typical of alcohol 
or carboxyl groups in organic materials. The presence 
of these groups suggests that the adsorbent may 
interact with pollutant molecules through hydrogen 
bonding. Additionally, the strong peak near 2,900 
cm⁻¹ is attributed to the stretching vibration of 
aliphatic C–H bonds, commonly associated with 
the carbon chains in cellulose or lignin structures, 
which are found in candlenut, walnut, and jenitri 
adsorbents.

Additionally, the absorption peak at approximately 
1,700–1,600 cm⁻¹ indicates the presence of carbonyl 
(C=O) groups, which are commonly found in 
carboxylic acids or ketones. These functional groups 
are essential in the adsorption process, as they 
facilitate polar interactions with pollutant molecules.

 Furthermore, peaks in the 1,200–1,000 cm⁻¹ 
range correspond to C–O bond vibrations, typical 
of esters, ethers, and polysaccharide compounds. 
These functional groups enhance the reactivity of 
the adsorbent, allowing it to effectively interact with 
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Figure 2
Bulk densities of some adsorbents

Figure 3
FTIR spectra

heavy metal ions or organic compounds, primarily 
through ion exchange or coordination covalent 
bonding. Functionally, the functional groups such as 
–OH, C=O, and C–O in the candlenut bioadsorbent 
are crucial for enhancing adsorption performance 
[29]. The hydroxyl (–OH) and carbonyl (C=O) 
groups create active sites on the material’s surface, 
facilitating both chemical and physical interactions 
with pollutants, including heavy metals, organic 
compounds, and other polar substances (Yu et al. 

2018). The presence of these functional groups 
enhances the adsorbent’s capacity by facilitating 
hydrogen bonding, electrostatic interactions, 
and complexation. As a result, the functional 
group characteristics identified in the candlenut 
bioadsorbent through FTIR analysis highlight its 
potential as an effective material for adsorption 
applications in environmental processes, such as 
water purification and the removal of hazardous 
pollutants (Yang et al. 2019). 
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As shown in Figure 4, the SEM results, 
obtained using the JSM-6460LA scanning electron 
microscope, reveal notable differences in the surface 
morphology of the bioadsorbents (A) candlenut, (B) 
walnut, (C) jenitri, and (D) jenitri + KOH which 
affect their adsorption performance. The candlenut 
(A) bioadsorbent displays a grooved surface with 
small pores and scattered particles on its surface, 
providing a large contact area for pollutant adsorption 
through physical mechanisms. In contrast, the walnut 
(B) bioadsorbent has a rough, irregular surface with 
smaller pores, which are still effective at adsorbing 
smaller pollutants, though its adsorption capacity is 
slightly lower than that of the other materials. The 
jenitri (C) bioadsorbent has a surface with small 
to medium-sized pores that are relatively evenly 
distributed, facilitating adsorption through the 
diffusion of pollutant molecules into the available 
cavities.

 Chemical activation with KOH on jenitri 
(jenitri + KOH) caused considerable alterations to 
the surface structure, creating larger pores and a 
more open structure. This modification enhances 
the material’s specific surface area and porosity, 
improving its ability to adsorb pollutants, particularly 
heavy metal ions and complex organic compounds 
(A. Nayak et al. 2017).

The open structure enhances interactions 
between pollutant molecules and active sites on 
the adsorbent surface. As a result, SEM confirmed 
that KOH treatment considerably improved the 
adsorption performance of jenitri compared to other 
bioadsorbents. The optimized porous structure of 
jenitri + KOH makes it the most promising material 
for waste treatment and environmental purification 
applications. Meanwhile, candlenut and walnut 
bioadsorbents continue to offer substantial potential 
for physical adsorption due to their grooved and 
rough surface structures.

Filtration tests 
As shown in Figure 5, the filtration test results 

using the bioadsorbents candlenut, walnut, jenitri, 
and jenitri + KOH show variations in performance in 
reducing TDS levels at 40°C. The TDS values reflect 
the effectiveness of the bioadsorbents in removing 
pollutants. According to the graph, jenitri + KOH 
achieved the lowest TDS levels, ranging from 600 
to 700 mg/L, and remained relatively stable after 
a certain point. This suggests that despite its high 
porosity and large surface area from KOH activation, 
some dissolved particles still passed through the 
filtration process. While chemical activation with 

SEM characterization 

Figure 4
SEM characterization: (A) candlenut, (B) walnut, (C) jenitri, and (D) jenitri + KOH 
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KOH enhances interactions with pollutants, the 
possibility of material degradation at 40°C may 
contribute to the observed increase in TDS levels. 
This indicates that while jenitri + KOH effectively 
adsorbs pollutants, further refinement in its stability 
and structural integrity may be required to minimize 
material leaching during filtration.

In contrast, the walnut bioadsorbent showed a 
notable increase in TDS, reaching approximately 
600 mg/L, but stabilized more quickly than jenitri 
+ KOH. The rough, less porous surface of walnut 
allows it to trap dissolved pollutants, although its 
efficiency is lower than materials with larger surface 
areas (Wiśniewska et al. 2024). Meanwhile, the 
candlenut bioadsorbent, despite its grooved structure 
observed in the SEM analysis, exhibited a lower TDS 
value, stabilizing at approximately 400 mg/L. This 
suggests that candlenut is effective at adsorbing a 
considerable portion of dissolved pollutants, though 
its performance is still lower than that of walnut and 
jenitri + KOH.

In contrast, jenitri without KOH demonstrated 
the best performance in maintaining TDS stability, 
with values of approximately 300–350 mg/L. This 
suggests that the natural jenitri bioadsorbent has an 
inherent ability to effectively absorb pollutants at 
40°C, owing to its porous structure that facilitates 
the adsorption process. While KOH activation 
enhances porosity, it seems to contribute to the 
release of residues, resulting in higher TDS levels. 
This indicates that, although jenitri + KOH has an 
increased surface area for adsorption, untreated 
jenitri remains a more stable and efficient option 
for reducing dissolved solids in water treatment 
applications.

Overall, the jenitri bioadsorbent demonstrated 
the best performance in controlling TDS levels, while 
jenitri + KOH showed a high adsorption capacity but 
led to increased TDS due to the release of chemical 
activation residues. The candlenut and walnut 
bioadsorbents, while still promising, were less 
effective at reducing TDS compared to jenitri. These 
findings highlight that both the type of bioadsorbent 
and its treatment method considerably influence 
its filtration performance. The balance between 
porosity, surface area, and material stability is crucial 
in determining the effectiveness of adsorption for 
pollutant removal.

As shown in Figure 6, the turbidity test results 
using the bioadsorbents candlenut, walnut, jenitri, 
and jenitri + KOH revealed variations in their ability 
to filter suspended particles during the filtration 
process. Turbidity values reflect the concentration of 
suspended solids in the solution, offering insights into 
the effectiveness of each bioadsorbent. The walnut 
bioadsorbent exhibited the highest turbidity values, 
ranging from approximately 800 to 1,000 NTU, 
with substantial fluctuations. This suggests that, 
despite its rough surface structure, walnut’s porosity 
is suboptimal, leading to insufficient retention of 
suspended particles during filtration. As a result, 
more particles remain in the solution, reducing 
filtration efficiency.

In contrast, the candlenut bioadsorbent showed 
more stable results than walnut, with turbidity 
values ranging from 600 to 700 NTU after an 
initial increase. The grooved structure observed in 
the SEM analysis enhances candlenut’s ability to 
retain some suspended particles, but its efficiency in 
considerably reducing turbidity remains suboptimal. 
However, jenitri demonstrated superior performance, 
with lower and more stable turbidity values of 
approximately 200-300 NTU. The uniform pore 
structure of jenitri plays a key role in effectively 
trapping suspended particles, making it a highly 
efficient adsorbent for turbidity reduction.

The best results were achieved with jenitri + 
KOH, which exhibited the lowest and most stable 
turbidity values, ranging from 100 to 200 NTU. 
Chemical activation with KOH considerably 
enhanced the porosity and specific surface area of the 
jenitri bioadsorbent, allowing suspended particles to 
be efficiently captured within its pores and cavities. 
This optimized structure facilitates the effective 
filtration of solid particles, making jenitri + KOH the 
top-performing bioadsorbent for turbidity reduction 
in solution of those tested.

Overall, the performance variations among 
the four bioadsorbents highlight the crucial role 
of surface structure and porosity in filtration 
effectiveness. Jenitri + KOH outperformed the others 
in reducing turbidity, followed by jenitri, while 
candlenut and walnut demonstrated lower efficiency. 
Thus, KOH-activated jenitri has great potential 
for water treatment applications, particularly for 
considerably lowering turbidity levels (Zhao, Ma, 
et al. 2020).
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This research conducted on four types of 
bioadsorbents candlenut, walnut, jenitri, and jenitri 
+ KOH shows a correlation between adsorption 
effectiveness and bioadsorbent properties. 

In the bulk density characterization test, 
candlenut exhibited the highest bulk density, while 
jenitri + KOH showed the lowest. KOH activation 
has proven effective in enhancing both the physical 
and chemical properties of the adsorbent, thereby 
improving its interaction with the adsorbate 
compared to nonactivated materials. Several studies 
have demonstrated that KOH-activated adsorbents 
typically have a bulk density of 0.6 g/mL, as KOH 
treatment creates a more open pore structure, 
which is essential for the adsorption process. 
Consequently, KOH activation significantly boosts 
the adsorption performance of jenitri (Zhao, Ma, et 
al. 2020; da Paixão Cansado et al. 2019; Musah et 
al. 2024).

The FTIR results indicated that the characteristics 
of functional groups play a considerable role 
in determining adsorption efficiency. Modified 
bioadsorbents show strong potential for pollutant 
removal (Badawi et al. 2017). KOH activation of 
jenitri enhances its adsorption capacity, making it 
more effective in removing pollutants from water 
(El-Ghoul et al. 2021; Kasbaji et al. 2022). SEM 
analysis confirmed that KOH activation altered the 

bioadsorbent’s internal structure, making it looser 
and more porous, while considerably increasing its 
specific surface area. This structural modification 
directly contributes to an enhanced adsorption 
capacity (Zhao, Junguan, et al. 2020).

The effectiveness of bioadsorbents such as 
candlenut, walnut, jenitri, and jenitri + KOH in 
reducing TDS levels at 40°C varies. Although jenitri 
+ KOH shows promising physical characteristics, 
the results suggest that factors such as pore 
structure and chemical interactions may limit its 
effectiveness in lowering TDS levels. Previous 
studies have indicated that walnut as a bioadsorbent 
is more effective in reducing TDS (Hasanzadeh et 
al. 2020). However, based on our experimental data, 
jenitri exhibited the best performance in controlling 
TDS levels.

In terms of turbidity reduction, walnut showed 
the highest turbidity values with a rapid increase, 
followed by candlenut, which showed moderate 
turbidity levels. Jenitri showed reduced turbidity 
levels, and the addition of KOH further enhanced 
its ability to reduce turbidity. This improvement 
is attributed to chemical structural changes that 
influence emulsion stability, making KOH-activated 
jenitri the most effective bioadsorbent for turbidity 
reduction (Homayoonfal et al. 2015; Aeruginosa 
2016). 

Table 1
Turbidity reduction and TDS reduction comparison 

Adsorbent 
Turbidity
Removal

(%) 

TDS 
Removal 

(%) 
Notes Ref 

Tea Waste 54% 36%

Effective for 
multiple 

physiochemical 
attributes 1. 

(Zaman et 
al., 2021) 

Fe-Ni-Co 
Nanocomposite 

98.5% 70%
High efficiency 

in batch 
adsorption 2. 

(Iqbal et 
Al., 2022) 

Maghemite 
Nanoparticles 89% 56%

Optimized 
conditions: pH 7, 
0.75 g dose, 40 

min contact 
3 time. 

(Iqbal et 
Al., 2021) 

GAC + Zeolite + 
Pumice 

 
90.27% 82.95%

Best performance 
in a horizontal 
series filter for 
greywater 4. 

(Bahrami et 
al., 2021) 

PHKC (Kaolin + 
Hap + Starch) 

97.07% Not 
Specified

Effective for 
tannery 

wastewater 
treatment 5. 

(Iji et 
al., 2023) 

Moringa Leaf 
Powder 75% 51%

High adsorption 
potential for 

various pollutants 
6. 

(Sharif et 
al., 2021) 

Crab Shell 
Chitosan 

Significant 
decrease

Significant 
decrease

Effective for 
tannery effluents, 

specific values 
not provided 7. 

(Hossain et 
al., 2017) 

Jenitri High(93%) High(95%)
High effective in adsorbing  
oil andreducing turbidity in 

produced water 

Jenitri Activited High (96%) High (97%)
Highly effective in adsorbing 
oil and reducing turbidity in 

produced water. 
- 
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Table 1
Turbidity reduction and TDS reduction comparison (continued) 

Adsorbent 
Turbidity
Removal

(%) 

TDS 
Removal 

(%) 
Notes Ref 

Tea Waste 54% 36%

Effective for 
multiple 

physiochemical 
attributes 1. 

(Zaman et 
al., 2021) 

Fe-Ni-Co 
Nanocomposite 

98.5% 70%
High efficiency 

in batch 
adsorption 2. 

(Iqbal et 
Al., 2022) 

Maghemite 
Nanoparticles 

89% 56%

Optimized 
conditions: pH 7, 
0.75 g dose, 40 

min contact 
3 time. 

(Iqbal et 
Al., 2021) 

GAC + Zeolite + 
Pumice 

 
90.27% 82.95%

Best performance 
in a horizontal 
series filter for 
greywater 4. 

(Bahrami et 
al., 2021) 

PHKC (Kaolin + 
Hap + Starch) 

97.07% Not 
Specified

Effective for 
tannery 

wastewater 
treatment 5. 

(Iji et 
al., 2023) 

Moringa Leaf 
Powder 75% 51%

High adsorption 
potential for 

various pollutants 
6. 

(Sharif et 
al., 2021) 

Crab Shell 
Chitosan 

Significant 
decrease

Significant 
decrease

Effective for 
tannery effluents, 

specific values 
not provided 7. 

(Hossain et 
al., 2017) 

Jenitri High(93%) High(95%)
High effective in adsorbing  
oil andreducing turbidity in 

produced water 

Jenitri Activited High (96%) High (97%)
Highly effective in adsorbing 
oil and reducing turbidity in 

produced water. 
- 

Adsorbent 
Turbidity
Removal

(%) 

TDS 
Removal 

(%) 
Notes Ref 

Tea Waste 54% 36%

Effective for 
multiple 

physiochemical 
attributes 1. 

(Zaman et 
al., 2021) 

Fe-Ni-Co 
Nanocomposite 

98.5% 70%
High efficiency 

in batch 
adsorption 2. 

(Iqbal et 
Al., 2022) 

Maghemite 
Nanoparticles 

89% 56%

Optimized 
conditions: pH 7, 
0.75 g dose, 40 

min contact 
3 time. 

(Iqbal et 
Al., 2021) 

GAC + Zeolite + 
Pumice 

 
90.27% 82.95%

Best performance 
in a horizontal 
series filter for 
greywater 4. 

(Bahrami et 
al., 2021) 

PHKC (Kaolin + 
Hap + Starch) 

97.07%
Not 

Specified

Effective for 
tannery 

wastewater 
treatment 5. 

(Iji et 
al., 2023) 

Moringa Leaf 
Powder 75% 51%

High adsorption 
potential for 

various pollutants 
6. 

(Sharif et 
al., 2021) 

Crab Shell 
Chitosan 

Significant 
decrease

Significant 
decrease

Effective for 
tannery effluents, 

specific values 
not provided 7. 

(Hossain et 
al., 2017) 

Jenitri High(93%) High(95%)
High effective in adsorbing  
oil andreducing turbidity in 

produced water 

Jenitri Activited High (96%) High (97%)
Highly effective in adsorbing 
oil and reducing turbidity in 

produced water. 
- 

CONCLUSION
The results indicate that the KOH-activated 

jenitri bioadsorbent outperforms the bioadsorbents 
currently used in oilfield applications. Consequently, 
walnut can be replaced by jenitri and jenitri + KOH, 
providing a more effective and locally available 
alternative for produced water treatment. 
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