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ABSTRACT - Reservoir characterization can be enhanced by integrating lateral and vertical perspectives
from seismic surveys and well logging, respectively. Seismic impedance is a crucial parameter, calculated
by multiplying the rock density by the primary (P) wave velocity. While acoustic impedance solely considers
these two factors, elastic impedance incorporates additional angular measurements and secondary (S) wave
velocity data. Elastic impedance, however, equates the incident angle with the transmission angle in disregard
of Snell’s law; therefore, it provides a simplified representation of seismic impedance. This study explores
an alternative approach to seismic impedance, known as ray impedance. We calculated ray impedance by
tracing the impedance variation along the path of a seismic ray, considering its changing velocity and angle
as it traveled through different subsurface strata. We transformed the seismic information from the offset
space to the ray parameter space, to achieve ray parameter stacking. Unlike the traditional angle domain
inversion, which uses near-angle, mid-angle, and far-angle seismic stack data, the ray-impedance inversion
utilized segments of ray data: near-ray, mid-ray, and far-ray. We compared the common depth point stack, ray
stack, and angle stack methods to infer the acoustic, elastic, and ray impedance characteristics. Challenges
with gas cloud interference in seismic data imaging were present. We developed a ray parameter strategy
to address these imaging difficulties. The comparison of different stacking techniques indicated that ray
stacking could offer an alternative for imaging in the presence of gas cloud effects. Furthermore, impedance
cross-plotting demonstrated that ray impedance provided a more discernible separation of low-clay-content
zones than elastic impedance did. Overall, data processing in the ray parameter domain yielded positive
imaging outcomes in the presence of gas clouds, suggesting that ray impedance is a practical method for
lithological differentiation.
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INTRODUCTION

The geoscientific investigation of subsurface
structures, such as horizons and faults, often involves
qualitative methods to outline the geometry of these
structures. Nonetheless, quantitative approaches
are vital for the comprehensive understanding
of subsurface layers. These approaches rely on
numerical data derived from inverted seismic
recordings.

Seismic impedance, which indicates how well
a layer transmits seismic waves, is a crucial piece
of these quantitative data. Seismic impedance is a
critical property directly related to reflectivity. For
reservoir characterization, seismic inversion is an
important method for formulating subsurface models.
Seismic inversion integrates seismic and well-log
data to predict structures in the Earth’s subsurface,
(Tarantola 2005). The choice of the impedance log
input is pivotal for enhancing the accuracy of seismic
impedance estimates in the inversion process.

There are two main types of seismic impedance:
acoustic (Al) and elastic (EI). The Al is calculated
by multiplying the density of a given layer with its
P-wave velocity, assuming that the waves meet the
layer at a perpendicular angle and neglecting the
S-wave velocity effects. The EI, on the other hand,
extends the calculation to nonzero incidence angles,
as proposed by (Connolly 1999). The EI inversion
method has been successfully applied to characterize
many hydrocarbon reservoirs (Connolly 1999;
Avseth 2005). This method, based on the Zoeppritz
equation (Aki & Richard 1980), also takes into
account S-wave velocity data. The EI is calculated
by applying a consistent angle value to represent both
the incident and transmission angles. This approach,
however, overlooks Snell’s law, which states that the
angles of incidence and transmission differ because
of'the variable media through which the wave travels.

Although the EI is often more accurate than
the Al its reliability can be undermined by two
key assumptions: the use of a fixed angle value
for both the incident and transmitted angles,
which overlooks Snell’s law, and the adoption of
a constant K value, which poses challenges owing
to the instability that can arise from different K
inputs in the EI approximation.Ray impedance
(RI), presents a more precise approach. It utilizes
inputs similar to those used for the calculation of EI,
such as P- and S-wave velocity and density; yet its
calculation does not rely on a singular angle value,
but incorporates a p-parameter ray value to better
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account for wave path variations. Building on (Wang
1999) approach to reflectivity approximation (Wang
2017), the concept of RI was used to estimate the
seismic impedance along specific ray paths under
Snell’s law. In contrast to the use of fixed angles (as
in the EI), the RI is based on a constant ray path,
meaning that different subsurface media result
in different ray angles. The RI approach has
been shown to aid lithological discrimination
(Lu 2010; Zhang 2010).

In this study, we applied the concept of RI to
process seismic data in the ray parameter domain as
a solution to the presence of subsurface gas clouds
that cause poor seismic data imaging.

METHODOLOGY
Data

This study incorporated the synthetic elastic
model simulation developed by (Triyoso et al.
2018). This model, based on actual log data, includes
a genuine seismic processing velocity model
that highlights the location of the gas cloud, as
depicted in Figure 1.

The P-wave velocity model for a seismic line
crossing a specific well included the correlation
between density and the P-wave velocity, derived
from the well log data. The results of the correlation
analysis were used to develop a low-frequency model
of the subsurface.

Following (Triyoso et al. 2017, 2018), the
recording configuration used split-spread shooting
with 153 shot points, 161 geophone groups spaced
25 mapart, and a 50-meter interval between sources,
to produce the seismic shot gather model.

Elastic Impedance and Ray Impedance

Snell’s Law describes the relationship between
the angle of incidence and the angle of transmission
(measured from the normal line) of the ray path that
passes through different media boundaries (Figure 2).

Snell’s Law is expressed mathematically by the
following equation:

sinf, sinf,

P1=P2 = == 1)

where p is the ray parameter of medium 1, p, is
the ray parameter of Medium 2, 0, the angle of the
incidence with P-wave velocity, and 6, is the angle
of transmission in Medium 2 with P-wave velocity.
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P-WAVE VELOCITY MODEL

Configuration:

Splitspread

153 SP, 161 Group Geophone
Group Interval 25 m
SourceInterval 5o m

GAS CLOUD
FAULT PLANES

1 igure 1
The data model based on (Triyoso et al. 2017, 2018) used to construct seismic data for the gas cloud scenario. Full
wave modeling was applied to produce seismic data gatherings.
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Figure 2

Seismic reflection and transmission according to (a) Snell’'s Law and (b) assumption in elastic impedance.

The seismic impedance can be defined as the
product of velocity and density, which are typically
estimated from post-stack seismic data. The Al is
the seismic impedance for a zero angle of incidence.
Its mathematical expression is as follows:

Al = pa, 2

where p is the density and a is the P-wave
velocity. The El is the seismic impedance for a non-
zero angle of incidence. Its mathematical expression
is as follows (Connolly 1999):

E] = p(1—4—Ksin29)a(l—tanzg)‘g(—SKsinZO) 3)

where p is the density, a is the P-wave velocity,
[ is the S-wave velocity, 6 is the angle of incidence,
and K is a substitution assumed to be of constant
value. For 8= 0, the EI equals the Al

Figure 3, illustrating the difference between
the constant offset constant angle, and constant
rays, explains the basic concept of the ray domain.
The constant offset (Figure 3a) shows a seismic
ray acquired from the same offset distance. The
constant angle (Figure 3b) shows a seismic trace
obtained from the same angle. The constant ray
(Figure 3c) shows a seismic trace from the same
ray. The constant offset condition shows a limited
angle value, as seen from the shrinking angle with
increasing depth. For a constant angle, the maximum
angle value depends on the offset distance in the data.
These two approaches are interconnected: a constant
offset has a limited angle range, and a constant angle
has a limited offset range. Meanwhile, the constant
ray condition demonstrates that the input of a given
angle value is not binding because the ray parameters
in different subsurface layers provide different
velocity and angle information.
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Figure 3
Constant offset (left), constant angle (middle), constant ray (right).
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Construction of seismic stack in the constant ray parameter domain.

Mathematically, the RI is the product of density,
P-wave velocity, and S-wave velocity; therefore,
the RI is a generalization of the Al and EI. The
distinguishing factor is that the EI uses one input
angle value as a reference for the angles of incidence
and transmission, while the RI eliminates this
assumption by using ray parameters as the input data.

Wang (1999) introduced the RI equation as

follows:
Ap
2((&)&)
B

pa\/ﬁ—zpz(l - B*p?) , )

RI =

where p is the density, a is the P-wave velocity, f
is the S-wave velocity, and p is the constant ray
parameter. When =0, the RI equals the Al

A further advantage of the RI is that it maintains
the dimensionality of the impedance as a direct
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multiplication product of velocity and density, unlike
EIL which has a constantly changing dimensionality
owing to its angle of incidence. Following (Wang
1999), it is possible to use a range of angle values,
including a wide angle, depending on the signal
quality of the angle gather. In this study, however,
the quality of data for angles larger than 30°was poor.
For this reason, we selected a maximum angle of 30°.

Transformation into the Ray Parameter
Domain

The transformation from the time-offset (t-x) to
the time-ray (1-p) domain is based on the following
equation:

T=t-px, ®)

where 7 is the intercept time, ¢ is the arrival time, p
is the ray parameter, and x is the offset
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SEISMIC INVERSION
(model based)

........

DOl.org/10.29017/SC0OG.47.2.1621 |

BEREDNEBEYIBLHUBELLAABERLIRBEDRABIILAIS2DRRES

135



Scientific Contributions Oil & Gas, Vol. 47. No. 2, August 2024: 131 - 142

The t—p transformation process involves the
conversion of seismic data from the offset to the ray-
parameter domain. We performed this conversion by
sorting the seismic data according to ray and then
stacking the data corresponding to the same ray to
obtain ray stack data. We converted the data to the
angle domain using AVO Analysis (Rutherford &
Williams 1989), determined the angle value used to
construct the angle stack, and then sorted the angle
values for each common depth point (CDP) gather.
Finally, we performed stacking to obtain the angle
stack of the desired angle value, as shown in Figure 4.

The workflow of this study (Figure 5) followed
(Sinaga et al. 2018) and (Triyoso et al. 2020, 2023).
The seismic data were processed up to the prestack
time migration (PSTM) stage. The results of the
PSTM gather were converted into a ray-parameter
and an angle domain. The ray and angle Stacks
were categorized as near, mid, and far. The resulting
datasets were then used to generate inverted volumes
for the RI, EI, and Al

Seismic Processing

The processing of the seismic data involved the
assignment of a geometry, removal of noise, analysis
of velocity, and true amplitude recovery (TAR).
The PSTM was then used for data migration. The

migrated data were deemed final and converted into
the ray and angle domains.

Angle and Ray Value Selection

After examination of the angle range of the data
(Figure 6), we set the maximum angle range at 30°.
The near, mid-, and far angle was 0—10°, 10-20°,
and 20-30°, respectively. We then calculated the
ray parameter as the angle counterpart. First, we
calculated the average value of the wave velocity P
(=2341). Then, we used the formula to obtain the
near ray (0—74 ms/km), mid ray (74—146 ms/km),
and far ray (146-191 ms/km).

RESULT AND DISCUSSION

Stack Results

The mid- and far-ray stacks revealed reflectors
in the gas cloud zone, as shown in Figure 7. The
near ray was still affected by fluid influence from
the gas cloud zone, while the mid and far ray were
not affected by the gas cloud. The data in the angle
domain remained relatively unchanged, and the
reflector was slightly strengthened at the far angle.
However, data with a more extended offset are
needed to obtain an ultra-far angle, which could
resemble the mid- and far-ray results.
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Comparison of the seismic images: (a) PSTM stack, (b) Near-angle stack, (c) Mid-angle stack, (d) Far-angle stack, (e)
Near-ray stack, (f) Mid-ray stack, and (g) Far-ray stack.
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Zoning Analysis of The Impedance Log

The AI-RI zoning showed a better separation
of the low-V clay than the AI-EI zoning (Figure
8). Figure 9 shows that the location of the low-V
clay zone was reveled in both the EI and RI.
The cross section also revealed the location of
the low-V, high-resistivity clay zone (red color
in Figure 10).

Seismic Inversion

The seismic inversion results (Figure 10)
revealed that the properties of the inverted RI were
similar to those of the inverted EI, notwithstanding
the disparities between the EI and RI noted in the
previous section. A trace of the well location was
extracted from each inverted impedance volume
to compare the results of the two methods, as
shown in Figure 11.

The near and mid sections demonstrated the
similarities between the EI and RI. In the far
section, the inverted RI had a sufficient resolution,
and accurately delineated the geological markers.

CONCLUSION

This study demonstrates the effectiveness of
the Ray Impedance (RI) as a viable alternative
to Elastic Impedance for seismic imaging,
particularly in gas cloud zones. RI successfully
revealed the gas cloud zone reflector and provided
superior resolution of the low-velocity clay zone
compared to EI. Furthermore, AI-RI effectively
identified dry-gas sand presence. While both
methods showed comparable inversion volumes,
AI-RI provided clearer delineation of the low-V
clay zone at the well location. The study highlights
the capability of RI, especially mid-to-far ray
stacks, in revealing the continuation of gas clouds.
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GLOSSARY OF TERMS
Symbol Definition Unit
Al Acoustic impedance
EI Elastic impedance
RI Ray impedance
T-p Tau-P
TAR True amplitude recovery
PSTM Pre-stack Time Migration
AVO Amplitude versus offset

CDP Common depth point
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