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ABSTRACT - Accurately identifying lithological facies is crucial for comprehending geological variations 
in a proven reservoir. To enhance the accuracy of facies classification compared to previous studies on 
the same dataset, five distinct machine learning algorithms were employed to predict facies in both a 
panoma field dataset and Z-Field, Indonesia. The analysis data samples with known facies, originating 
from core data from Panoma Field and Z-Field. Facies classification was addressed using five well-known 
classification algorithms, namely K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Neural 
Network Classifier (NNC), Random Forest Classifier (RFC), and Decision Tree Classifier (DTC). The 
dataset was divided into training and testing subsets to evaluate the machine learning models. The five 
suggested algorithms demonstrate effective facies prediction, closely aligning with the actual facies in 
the test wells within the Panoma field. However, these algorithms struggle to predict facies accurately in 
the Z field well, primarily attributed to the imbalanced data distribution between sandstone-claystone and 
siltstone-limestone. Equalizing the number of facies labels in the training data becomes essential to enable 
the algorithm to recognize patterns and accurately estimate all facies types.
Keywords: facies, well logging, machine learning, supervised learning.

INTRODUCTION

In general, geologists often rely on direct core 
measurements to discern layer boundaries, enabling 
the acquisition of detailed well information. 
Nevertheless, this approach proves inefficient, costly, 
and time-consuming when it comes to analysis and 
interpretation. Well-log analysis emerges as a highly 
valuable method for characterizing well lithology, 
encompassing parameters like pressure, saturation, 
fluid type, pore characteristics, and geometry. 
Traditional techniques employed in well-log data 

interpretation, such as visual inspection, primarily 
hinge on the interpreter’s experience, yielding 
varying opinions and interpretations. To circumvent 
the issues arising from divergent interpretations, as 
well as to enhance cost-effectiveness and efficiency, 
numerous computational algorithms have been 
embraced as a viable and cost-effective alternative.

Facies classification is the process of identifying 
rock lithology based on indirect measurements such 
as well log measurements. Facies classification is 
a process that is generally carried out manually by 
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experienced geologists so it takes a relatively long 
time and is inefficient (Saroji et al., 2021). Based 
on this, many machine learning applications have 
been carried out on well log data to perform facies 
classification automatically (Al-Mudhafar, 2017; 
Al-Mudhafar et al., 2022; Hall, 2016; Hardanto 
& Wulandhari, 2021; Imamverdiyev & Sukhostat, 
2019; Mandal & Rezaee, 2019; Merembayev et 
al., 2021; Mohamed et al., 2019; Pratama et al., 
2020; Saroji et al., 2021; Singh et al., 2020)an 
integrated procedure was adopted to obtain accurate 
lithofacies classification to be incorporated with well 
log interpretations for a precise core permeability 
modeling. Probabilistic neural networks (PNNs. 
Machine Learning (ML) is a scientific discipline that 
defines statistical or mathematical models based on 
data (Dramsch, 2019). Machine learning applications 
can increase the effectiveness and efficiency in finding 
solutions to geophysical interpretation problems on 
complex data (Dell’Aversana, 2019; Merembayev 
et al., 2021) and reservoir quality assessment with 
lower cost and time (Dixit et al., 2020).

In this study, facies classification was carried out 
in the Panoma Field dataset and Z field, Indonesia 
using the support vector machine (SVM), K-Nearest 
Neighbor (KNN), Neural Network Classifier (NNC), 
Random Forest Classifier (RFC), and Decision Tree 
Classifier (DTC). 

METHODOLOGY

Machine Learning Algorithm
At the cutting edge of artificial intelligence 

(AI) technology, machine learning comprises a set 
of data analysis algorithms covering classification, 
regression, and clustering methods (Hall, 2016). 
This technology is broadly divided into supervised 
and unsupervised categories. In supervised machine 
learning, essential elements involve input features 
and target output. In the field of geoscience, 
machine-led applications utilizing wire-line logs 
are commonly employed to tackle challenges in oil 
and gas exploration, development, and production 
environments.

This present research focuses on improving 
the recognition of lithological facies in a published 
dataset by employing supervised classification 
algorithms. The objective of this inquiry is to assess 
the potential of these algorithms in enhancing the 
identification of lithological facies within the realm 
of geoscience.

The research consists of 4 stages, namely data 
selection, training phase, verification, and validation. 
The data selection phase began by selecting wells as 
training data and test data. The training data from 
the wells is then separated as much as 80% for the 
training phase and 20% for the verification stage. 
The data parameters used in this study can be seen 
in Figure 1. 

In the training phase, the machine learning 
algorithm will recognise and form a relationship 
pattern between input and output. In this study, 
the input used is 80% training data from wireline 
logging measurement results and the output used is 
facies data.

The verification stage is the stage of knowing the 
accuracy of the machine learning training results. 
This stage uses 20% of the training data that is not 
used in the training phase. The machine learning 
algorithm makes predictions on this data and the 
results are matched with existing facies data based 
on the confusion matrix. The parameter data used in 
this study can be seen in Figure 1. The training and 
test data were normalized so that the input features 
have a uniform scale to help in faster convergence 
of the algorithm. The validation phase is a stage to 
validate the ability of machine learning to estimate 
using different data sets. If the previous stage uses 
data from the same well, then the validation stage 
uses data from different wells, namely test data. The 
results of the facies prediction will be compared with 
the existing facies data to determine the accuracy of 
the estimation. In this investigation, the algorithm’s 
accuracy is assessed using the Jaccard Index and F1-
Scores. The Jaccard Index, also known as the Jaccard 
similarity coefficient, serves as a statistical measure 
to gauge the similarities between sets of samples. 
This metric highlights the similarity between finite 
sample sets and is formally expressed as the size of 
the intersection divided by the size of the union of 
the two labeled sets, as outlined in Equation 1.
  

 

 The F1 score is computed as the harmonic 
mean of precision and recall. An F1 score attains 
its optimal value of 1 when precision and recall are 
perfect, and it diminishes to 0 at its worst. Equa-
tion 2 illustrates the calculation of accuracy using 
F1 scores.
  

(1)

(2)

𝐽𝐽(𝑦𝑦, 𝑦𝑦1) = |𝑦𝑦∩𝑦𝑦1𝑦𝑦∪𝑦𝑦1|  𝐹𝐹1 = 2 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝×𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑝𝑝𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟   
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Figure 1
Distribution of facies on training data. (a) Panoma field and (b) Z Field.

(b)

 

(a) 

(b) 

Data Preparation
The data for this study using 2 field, Panoma 

(Dubois et al., 2007)seven classifiers based on 
four different approaches were tested in a rock 
facies classification problem: classical parametric 
methods using Bayes’ rule, and non-parametric 
methods using fuzzy logic, k-nearest neighbor, 
and feed forward-back propagating artificial neural 
network. Determining the most effective classifier 
for geologic facies prediction in wells without cores 
in the Panoma gas field, in Southwest Kansas, was 
the objective. Study data include 3600 samples 
with known rock facies class (from core and Z 
Field (Prabowo et al., 2023). The input dataset 
for Panoma field is constituted by a suite of five 

wireline log curves collected across the nine wells, 
encompassing average neutron density porosity 
(PHIND), neutron density porosity difference 
(DeltaPHI), , photoelectric effect (PE), resistivity 
(ILD_log10) and gamma-ray (GR). The lithological 
composition of the target stratum is characterized 
by nine distinct classes, meticulously delineated 
by (Dubois et al., 2007)seven classifiers based on 
four different approaches were tested in a rock 
facies classification problem: classical parametric 
methods using Bayes’ rule, and non-parametric 
methods using fuzzy logic, k-nearest neighbor, 
and feed forward-back propagating artificial neural 
network. Determining the most effective classifier 
for geologic facies prediction in wells without cores 
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in the Panoma gas field, in Southwest Kansas, was 
the objective. Study data include 3600 samples 
with known rock facies class (from core through 
an exhaustive petrophysical assessment and core 
analysis. The nomenclature for facies classification 
adheres to established categories: Phylloid-algal 
bafflestone (BS) , Packstone-grainstone (PS), 
Dolomite (D), Wackstone (WS), Mudstone (MS), 
Marine siltstone and shale (SiSh), Non-marine 
fine siltstone (FSiS), Non-marine coarse siltstone 
(CSiS), and Non-marine sandstone (SS). The input 
dataset for Z field is constituted by a suite of five 
wireline log curves collected across the three wells, 
encompassing density (FDC), gamma ray (GRST), 
resistivity (RT), SP (SP) and Compensated Neutron 
Log (CNL). The facies labels used in the well data 

Figure 2
Wireline log and Facies distribution of Panoma field. (a) Panoma field and (b) Z Field.

 

(a) 

 

(b) 

include (1) Sandstone, (2) Siltstone, (3) Claystone 
and (4) Limestone. Figure 2 delineates the facies 
log of a training well in conjunction with GR logs. 
The dataset is enriched with two crucial geological 
constraining variables: nonmarine and marine 
identifiers (NM and M) and relative position with 
respect to the base of formation (NM and M), denoted 
as RELPOS. Figure 3 presents a 1-D histogram of 
petrophysical logs, colour-coded with each facies in 
the diagonal orientation, while off-diagonal elements 
represent cross-plots of input features (well-logs). 
In Figure 3, every panel displays the correlation 
between two variables plotted on the x and y axes. 
A stacked bar plot on the diagonal exhibits the 
distribution of each data point, and the colour of each 
point corresponds to its respective facies.



25

Comparison of Facies Estimation of Well Log Data Using Machine Learning   
(Arya Dwi Candra et al.)

DOI.org/10.29017/SCOG.47.1.1593 |

RESULT AND DISCUSSION

Panoma Field
Analyzing data, comprehending the statistical 

representation of data samples, and visualizing the 
correlation function between input and output are 
pivotal aspects of any successful machine learning 
endeavor. The process of data preparation and outlier 
detection commenced with a visual examination 
of 1-D diagrams depicting input features, such as 
histograms where each facies is distinguished by 
color coding, as illustrated in Figure 3. Notably, the 
off-diagonal plots in a 2-dimensional space (Figure 
3) demonstrate that no singular feature can segregate 
facies linearly.

Porosity and density logs stand out as physically 
significant properties for reservoir characterization, 
playing a crucial role in rock sample identification. 
To enhance the dataset, DeltaPHI and PHIND 
from the input dataset undergo simple arithmetic 
operations, resulting in the creation of two distinct 
porosity logs (PHID and NPHI).

Given the requirement for consistent input 
feature scaling in machine learning applications, 
each feature undergoes transformation through a 
mean normalization operator. This procedural step 
facilitates a faster convergence of the algorithm. To 
optimize various hyperparameters of the selected 
machine learning algorithm—such as the number 
of iterations, regularization value, gamma, and 
others—a validation dataset is employed. This 
ensures a meticulous tuning of parameters for 
improved model performance.

The remaining sample points are split into training 
and validation sets at an 80:20 ratio, respectively. 
Five supervised learning algorithms (SVM, KNN, 
NNC, RFC, and DTC) are utilized on the training 
dataset to acquire the mapping function between 
input features and the output facies class. The facies 
under consideration are not strictly distinct; certain 
instances display a blending, posing a challenge to 
achieve complete accuracy in classification.. The 
accuracy of specific facies is assessed on a cross-
validation dataset to determine the most effective 
classifier model. SVM, KNN, NNC, RFC, and 
DTC algorithms predict classification accuracy 
using the Jaccard Index and F1 Scores, as presented 
in Table 1. The Jaccard Index indicates predicted 
classification accuracies of 55%, 52%, 54%, 50%, 
and 57% for SVM, KNN, NNC, RFC, and DTC, 
respectively. In terms of F1 Scores, the predicted 

classification accuracies are 48%, 53%, 49%, 53%, 
and 47%, respectively. These results confirm that the 
mentioned classifiers can be chosen for facies log 
determination in the Panoma field. Figure 4 illustrates 
the close alignment between the predicted facies and 
the actual facies class in the test well.

Table 1
Validation data of test data in panoma field

Machine 
Learning 

Model 
Jaccard 
Index F1 Score 

SVM 0.55 0.48 

RFC 0.50 0.53 

NNC 0.54 0.49 

KNN 0.52 0.53 

DT 0.57 0.47 

 

Z Field
This study uses log data from the Z field, 

Indonesia. This data has 3 wells data parameters 
(input) from wireline logging measurements and 
1 facies label (output). The facies data is the result 
of geological interpretation based on rock samples 
during drilling and petrographic analysis. Well data 
from wireline logging measurements used include 
density (FDC), gamma ray (GRST), resistivity (RT), 
SP (SP) and Compensated Neutron Log (CNL). 
The facies labels used in the well data include (1) 
Sandstone, (2) Siltstone, (3) Claystone and (4) 
Limestone. 

The accuracy of five algorithm facies estimation 
on the test data (validation stage) is determined based 
on the Jaccard Index and F1 Score as seen in Table 2. 
Based on the result, the predicted classification using 
the Jaccard Index for SVM, KNN, NNC, RFC, and 
DTC algorithm are 48%, 52%, 37%, 28% and 38%, 
respectively. While using F1 Scores, the predicted 
classification accuracy are 56%, 52%, 66%, 71% and 
64%, respectively. Figure 5 show the matched among 
the actual facies and predicted facies on the test well. 

Figure 5 also shows that the algorithm has not 
been able to estimate the siltstone and limestone 
facies. This is likely due to the small amount of 
siltstone and limestone facies training data (Figure 
1b) that makes the algorithm unable to recognize 
the pattern of the facies output. Training data should 
be data with an even distribution of the number of 
facies labels.
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(a) 

(b) 

Figure 3
A pair-plot graph depicting histogram distributions of petrophysical logs along the diagonal, while the off-diagonal 

section illustrates two-dimensional cross-plots for every log combination. Each facies is distinguished by a unique color 
to enhance clarity in visualization. The fields presented include (a) Panoma Field and (b) Z Field.
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Figure 4
Various model predictions using machine learning

Figure 5
Various model predictions using machine learning
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Comparison of the estimated facies results and 
the actual facies can be seen in Figure 5. It can be 
seen that the five algorithms fail to recognize the 
input-output pattern in the training data so that it 
dominantly estimates the facies as claystone and 
Sandstone. Claystone and Sandstone have the most 
distribution of facies in the training data (Figure 1b).

At the training stage, machine learning parameters 
must be determined correctly because they greatly 
affect the results of prediction accuracy. The results 
of facies estimation using the  algorithm have better 
accuracy than SVM. However, the two algorithms 
have not been able to determine the Siltstone and 
Limestone facies due to the small number of these 
facies in the training data so the algorithm has not 
recognized the facies input-output pattern yet. An 
even distribution of facies labels on the training data 
is needed so that the algorithm can recognize patterns 
and can estimate all types of facies correctly

Table 2
Validation data of test data in Z field

Machine 
Learning 

Model 
Jaccard 
Index F1 Score 

SVM 0.48 0.56 

RFC 0.28 0.71 

NNC 0.37 0.66 

KNN 0.52 0.52 

DT 0.38 0.64 

 

The accuracy of machine learning-based facies 
prediction is heavily influenced by factors such as 
the quality and volume of input data, parameters 
in the training dataset, and the specific machine 
learning algorithm employed (Dixit et al., 2020). 
An immediate observation reveals that certain facies 
are disproportionately represented, leading to a 
significant imbalance in the classification problem. 
Notably, Siltstone and limestone have fewer samples 
in the dataset, explaining why the classifier struggled 
to effectively characterize them. Conversely, 
Sandstone and Claystone, benefiting from a greater 
number of samples, were among the facies most 
accurately detected.

CONCLUSIONS
The facies estimation results using the five 

algorithms have different accuracies between the 
Panoma and Z fields. The five proposed algorithms 
can predict facies with results close to the actual 
facies of the test wells in the Panoma field. Whereas 
the five proposed algorithms are not able to predict 
facies with results close to the actual facies from 
the Z field well. This is due to the unequal amount 
of data between sandstone-claystone and siltstone-
limestone in the Z field. It is necessary to equalize 
the number of facies labels in the training data so that 
the algorithm can recognize patterns and estimate all 
facies types correctly.
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GLOSSARY OF TERM

Symbol Definition 
AI Artificial Inteligent 

BS Phylloid-algal bafflestone 

CNL Compensated Neotron Log 

CSiS 
Non-marine coarse 

siltstone 

D Dolomite 

DelthaPHI 
Neutron density porosity 

difference 

DTC Decision Tree Classifier 

F1-Score 
Measure of the harmonic 

mean of precision and recall 

FDC Encompassing Density 

FSiS Non-marine fine siltstone 

GR Gamma Ray 

ILD_log10 Resistivity Log 

KNN K-Nearest Neighbour 

M Marine 

MS Mudstone 

NM Non Marine 

NNC Neural Network Classifier 

PE Photoelectric Effect 
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