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ABSTRACT - Petrophysical parameters such as porosity and water saturation are vital in the petroleum 
industry for reservoir characterization. These aspects are typically assessed through laboratory measurements 
of core samples or intricate petrophysical calculations. Machine Learning (ML) offers a cost-effective and 
efficient approach as an alternative to conventional methods of predicting those parameters. However, 
developing ML models could be prone to invisible traps such as overfitting, underfitting, feature selection, 
and feature importance. This study aims to share how to identify the traps and their mitigation by establishing 
a synergistic workflow between ML and petrophysical theory. A model was developed based on data 
from several wells in the X field, where they are randomized and split into test and train data. Well-log 
normalization preceeded data splitting, and input features were normalized with outlier removal. A feature 
selection function was then employed to choose a specific amount of log data. Finally, the model selection 
function identified the highest-scoring model. Without a proper workflow, overfitting, irrelevant feature 
selection, and imprecise ranking issues emerged. However, these invisible traps were mitigated with the 
proper workflow, even with a relatively small data set. The final model could accurately predict porosity and 
water saturation.
Keywords: porosity, water saturation, machine learning, reservoir characterization, feature selection.

INTRODUCTION

Reservoir characterization plays an important 
role in the petroleum industry. Precise reservoir 
characterization is a key in reservoir development, 
monitoring,  management,  and production 
optimization (Aminzadeh et al., 2013). Considering 
this importance, it is imperative to integrate all 

available geologic and petrophysical parameters 
at their respective scales. Conventional methods 
such as petrophysical logs and core analyses are 
expensive and time-consuming. With technological 
advancement, machine learning (ML) and artificial 
intelligence (AI) are becoming new additions to 
traditional reservoir characterization, which includes 
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predicting petrophysical parameters such as porosity 
and water saturation. However, blindly using ML 
would result in an inaccurate prediction, leading to an 
unusable algorithm. This inaccuracy stems from the 
prevalent traps and pitfalls encountered in machine 
learning applications, especially in the scientific field. 
These traps and pitfalls challenge the development 
of an ML model (Vento et al.,  2019). The primary 
objective of this study is to present an overview of 
the challenges encountered and the corresponding 
solutions adopted, focusing specifically on predicting 
porosity and water saturation. Additionally, a 
well-defined work flow will be provided to guide 
the development of a machine-learning model, 
specifically for predicting petrophysical parameters. 

The dataset used in this study consists of depth, 
coordinate, formation, and log data obtained from 
55 wells located in the X field. Some extensive data 
preparation techniques were employed to ensure data 
quality, including data cleaning and a custom feature 
selection function for log data. After the quality 
control, the resulting dataset was used to develop 
an ML model.

METHODOLOGY

The dataset used to develop a regression model is 
based on the depth, coordinate, formation, and well 
log data of 55 wells in the X field. The initial step 
involves data preparation, encompassing missing 
value cleaning, outlier detection, and well-log 
normalization. Subsequently, the dataset was split 
into training and testing sets and normalized. A 
customized feature selection function was employed 
to identify the relevant well logs for prediction. 
This step is followed by utilizing the customized 
model selection function to determine the optimal 
predictive model. Finally, the model was improved 
by hyperparameter tuning before being used to 
predict porosity and water saturation. The general 
workflow used in this study is illustrated in Figure 1.

Data preparation
The data preparation consists of several steps. 

The first is missing value removal, followed by 
well-log normalization, and finally, data outlier 
detection. The initial removal of missing values 
focuses on the formation column. This initial 
removal of the formation column is crucial for 

well-log normalization to work as intended. Next, 
missing value removal is performed only on the 
features column, excluding the target column (i.e., 
porosity and water saturation). A threshold of 50% 
is used. Columns with over 50% missing values are 
removed, and any rows containing missing values 
in the remaining columns are removed, leading to 
a complete and accurate dataset, which is important 
for the whole machine learning process, as shown in 
a recent study by (Gonzalez et al., 2023).

A well-log normalization is done on the clean 
dataset. Well-log normalization plays a critical role 
in rendering well-log data free of systematic errors so 
that it could be used to develop an accurate machine-
learning model (Akkurt et al., 2019). The normalized 
value () of an unnormalized log curve () is given by,

   

        is the value of a particular lithology found 
in each well, typically close to the minimum value 
for that curve within the interval. It is the value 
of another specific lithology in each well, usually 
near the maximum value for that curve within 
the interval.  The best regional estimates of the 
accurate values for these two lithologies at that 
specific location. Well-log normalization is typically 
applied to gamma ray, neutron porosity, bulk density, 
sonic, and spontaneous potential logs. Only under 
specific requirements are resistivity logs subjected 
to normalization (Shier, 2004).

The last step of data preparation is the outlier 
detection. In this study, an isolation forest function 
was used to detect the outliers in the dataset. To 
maintain the accuracy of the outlier detection, the 
dataset’s wells are segregated, and outlier detection 
is executed individually for each well. The next 
step involves replacing the outliers through the 
interpolation of two values. The separated result 
will then be merged again into a complete dataset. 
The detailed workflow of this data preparation step 
is illustrated in Figure 2.
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Figure 1
General workflow.

 

Figure 2
Data preparation workflow.
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Train-test split and data normalization

To ensure no data leaking, a specific method of 
splitting the training and testing was proposed by 
(Andersen et al., 2022). This step is illustrated in 
Figure 3.

One well is excluded from the dataset. This well 
will then be used as a test dataset labeled as MT. 

Next, the dataset will be randomized and split 
into model datasets used to develop the regression 
model and the test dataset labeled MD-T, with a 
ratio of 90:10.

The model dataset will then be split into train 
(TR) and test (TE) datasets with a ratio of 80:20. The 
final regression model performance will be tested on 
TE and unseen data MT and MD-T.

Figure 3
Train-test split and data normalization workflow.

The data normalization process was then fitted to 
the train dataset and then used to transform both the 
train and test datasets. The data normalization was 
done using the MaxAbsScaler function. The scaled 
value of this scaler depends on whether negative or 
positive values are present. If the dataset contains 
exclusively positive values, the range is confined to 
the interval from 0 to 1. Conversely, if the dataset 
comprises solely negative values, the range is limited 
from -1 to 0. However, if both negative and positive 
values are present, the range spans from -1 to 1. The 
formula for MaxAbsScaler is given by,         

(2)𝑋𝑋�� � ��
���������  
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Model and feature selection

High-dimensional data poses a challenge in 
developing an ML model. A common approach to 
tackle this issue is feature selection, which involves 
removing irrelevant and redundant data. This can 
lead to improved computation time, enhanced 
learning accuracy, and a better grasp of the learning 
model or data (Cai et al., 2018). We utilize a custom 
feature selection function, which incorporates 
feature ranking based on multiple parameters, as 
demonstrated in a recent study by (Miah et al., 2020).

This function determines the best features to use 
for a certain regression model. It would generate 
combinations based on the available features. These 
combinations will then be evaluated by applying 
them to the model. The highest performance 
feature combination would be used as the selected 
features. The parameters used to rank these feature 
combinations are Root Mean Squared Error 
(RMSE), Mean Absolute Percentage Error (MAPE), 
Mean Absolute Error (MAE), and the p-value 
of the Kolmogorov-Smirnov test. The different 
combinations would be ranked first by RMSE and 

followed by p-value, MAPE, and MAE. There are 
no definitive answers as to what order works best. 
However, a p-value is placed second to ensure the 
model can predict a normal distribution. A p-value 
more significant than 0.05 indicates that the data is 
normally distributed.  

A regression model is needed as an input of 
the feature selection function. Therefore, in this 
case, a model selection should be done before 
feature selection. A custom function does the model 
selection. In this function, several regression models 
are evaluated and ranked by RMSE, p-value, MAPE, 
MAE, and its ability to select the relevant well logs to 
be used referring to the existing scientific knowledge, 
such as the ability to find the relationship between 
features. For example, model A selects resistivity, 
sonic, gamma ray, and neutron porosity logs to 
predict porosity. Based on existing petrophysical 
knowledge, the porosity prediction relies mainly on 
sonic, gamma ray, bulk density, and neutron porosity 
log. Model A could only select 3 of the 4 relevant 
well logs. The workflow of these two functions is 
illustrated in Figure 4 and Figure 5. 

Figure 5
Feature selection function workflow.

  Figure 4. Model selection function workflow.
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Cross-validation and hyperparameter tuning

Cross-validation is essential in developing a 
machine-learning model. It is used to evaluate the 
model’s effectiveness, particularly in scenarios where 
overfitting needs to be addressed (Brodeur et al., 
2020). Additionally, it aids in identifying the optimal 
hyperparameters that minimize test error. The cross-
validation used in this study is LeaveOneOut and 
KFold cross-validation. The scoring parameter used 
is Negative Root Mean Squared Error.

In investigating potential overfitting or 
underfitting in the model through KFold cross-
validation, the primary step involves acquiring 
the best test score utilizing the LeaveOneOut 
method. This process will take a long time as it is 
computationally expensive. Thus, it is recommended 
only for small datasets. Subsequently, the train and 
test score plots facilitate a comprehensive assessment 
of overfitting or underfitting tendencies. From these 
plots, the optimal number of splits can be obtained. 
A good model is indicated by the slight difference 
between the train and test scores, showing its 
good performance on both datasets. An additional 
but optional parameter is also used to obtain the 
optimal number of splits, which is the difference 
between the test score and the optimal test score 
from LeaveOneOut. The optimal number of splits 
can be found by ranking the number of splits based 
on the difference in train and test scores alongside 
the difference between test scores and optimal 

test scores. Using the obtained number of splits, 
hyperparameter tuning can then be done on the 
regression model using KFold cross-validation. This 
step is illustrated in Figure 6. 

RESULTS AND DISCUSSION

Porosity prediction

Using the described workflow, only a small 
percentage of data was clean and ready to be used 
to develop the regression model. There are several 
reasons for the missing data in well logging, such as 
tool failures, human error, and borehole environment 
issues. 

Imputation of missing value was not performed 
due to bias tendency. This resulted in a small 
dataset that is susceptible to overfitting. To prevent 
that, further value removal should not be done to 
preserve the existing data and improve the dataset’s 
performance. This was done by interpolating instead 
of removing outliers, which were found by utilizing 
isolation forest shown in Figure 7.

Before outlier detection, a well-log normalization 
was conducted. A specific well was chosen as the 
key well, which will be used as a reference for the 
other well’s log data. This was because this specific 
well was found to have a large amount of data in the 
dataset compared to the other wells. This specific 
well also has almost every formation in the X field. 
Next, using the model selection function, it was found 

Figure 6
Cross-validation and hyperparameter tuning workflow. 
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Figure 7
Detected outliers in the dataset from 3 selected well logs after utilizing isolation forest (outliers are shown in orange). 

that the Light GBM regressor outranks other models. 
Table 1 shows the performance of each regression 
model. The error metrics here used negative values 
instead of their usual positive counterparts. It was 
shown that Light GBM outperforms every other 
model by first looking at the log selected. Light 
GBM shows that it can select relevant well-log data 
to predict porosity. Next, the models were ranked 
based on their RMSE. Light GBM only lost to 
RandomForest in terms of RMSE. Then, the p-value 
based on the Kolmogorov–Smirnov test was used to 
ensure each model prediction’s normal distribution. 
MAPE and MAE were the last for the model to 
be ranked. Feature selection was then applied to 

the dataset with the selected model. Several well-
log data combinations were ranked based on their 
RMSE, p-value, MAPE, and MAE. Table 2 shows 
the performance of the top 5 combinations from all 
possible well-log data combinations. It was then 
determined that the combination of DTC, GR, and 
RHOB works best for the selected model to predict 
porosity.



122

Scientific Contributions Oil & Gas, Vol. 46. No. 3, December 2023: 21 - 33

| DOI.org/10.29017/SCOG.46.3.1586

 

Model Count     RMSE MAPE   MAE  p-value Log 

Light GBM 3 -0.030808 -0.164726 -0.030808 9.26604E-22 DTC, GR, RHOB 

RandomForest 2 -0.030734 -0.162285 -0.03066 1.89775E-22 RMED, DTC, GR 

GradientBoosting 2 -0.035082 -0.185432 -0.035111 3.98355E-23 DTC, RHOB, DRHO 

K-nearest Neighbours 2 -0.036898 -0.192354 -0.036898 1.67426E-20 NPHI, GR, CALI 

Multi-Layer Perceptron 2 -0.072015 -0.383556 -0.067583 3.52758E-24 NPHI, RHOB, DRHO 

CatBoost 1 -0.032768 -0.173822 -0.032768 1.58323E-23 SP, RHOB, DRHO 

XGBoost 0 -0.036147 -0.186993 -0.036147 1.40853E-23 RDEEP, DRHO, CALI 

DecisionTree 0 -0.038140 -0.206189 -0.03748 1.21314E-23 RDEEP, RMED, SP 

SupportVector 0 -0.043031 -0.201159 -0.043031 4.46249E-20 RDEEP, RMED, DRHO 

GaussianProcess 0 -0.247124 -1.077932 -0.247124 1.2286E-23 RMED, SP, DRHO 

Table 1
Regression models performance.

Table 2
Top 5 combination performance.

Log Combination RMSE MAPE MAE p-value 

DTC, GR, RHOB -0.024197 -0.102765 -0.018921 7.048761E-22

DTC, NPHI, RHOB -0.024337 -0.105002 -0.019293 9.049481E-22

RMED, DTC, NPHI -0.024389 -0.104832 -0.019351 5.088636E-22

SP, DTC, GR -0.024462 -0.105847 -0.019585 7.247938E-22

DTC, NPHI, GR -0.024463 -0.104773 -0.019201 5.389149E-22

 

Figure 8
Cross-validation plot of light GBM regressor.
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Using the selected model and features, cross-
validation using negative RMSE was executed. 
Using LeaveOneOut an optimal test score of 
0.031517 was obtained. Using KFold with a split 
ranging from 2 to 20, Figure 8 shows a plot of train 
and test scores.  Upon closer examination of the plot, 
it can be concluded that the model is overfitting. The 
lack of data caused this to develop the model.

By comparing the difference between train and 
test score and the difference between test score 
and the optimal test score for each split, it was 
found that 18 split is the optimal value. This means 
that with 18 splits of KFold, the model was less 
overfitting compared to the other number of splits 
and closer to the optimal value of the test score. The 
Light GBM regressor was tuned to achieve optimal 
performance using this number of splits. Table 3 
shows the train and test dataset’s MAE, MSE, and 
RMSE scores. Despite the overfitting, the model 
could perform well on all 3 of the test datasets. The 
prediction made by the model also follows a good 
distribution, not following a significant pattern. This 

Table 3
Light GBM regressor performance.

 MAE MSE RMSE 

Train dataset 0.029548 0.001515 0.038918

Test dataset 0.042652 0.003024 0.054994

MT dataset 0.012047 0.000190 0.013781

MD-T dataset 0.029956 0.001595 0.039941

 

Figure 9
Light GBM residual plot. (a) Train dataset (b) test dataset.

 

(a) (b) 

 

(a) (b) (a) (b)

could be seen in Figure 9. The feature importance 
of this model could be seen in Figure 10. According 
to petrophysical knowledge, well-log data should 
significantly predict petrophysical parameters. This 
was also shown in several studies by Al-Qahtani 
et al. (2019). The model could synergize with this, 
demonstrated by its tendency to rank well log higher 
than X-Y coordinates and depth.

Water saturation prediction
The prediction of water saturation follows the 

same workflow as porosity prediction. The regressor 
model CatBoost was selected, and a combination of 
spontaneous potential, sonic, and medium resistivity 
logs was chosen. According to petrophysics, water 
saturation prediction relies on the same well log 
as porosity prediction, excluding spontaneous log 
and with an addition of resistivity log. From cross-
validation, 20 splits were used to perform hyperpa-
rameter tuning on the model. Figure 11, Figure 12, 
Figure 13, and Table 4 show the cross-validation 
plot, residual plot, feature importance, and model’s 
score, respectively.
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Figure 10
Porosity prediction feature importance.

 

Figure 11
Cross-validation plot of CatBoost regressor.
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Figure 12
CatBoost residual plot. (a) Train dataset (b) test dataset.

 

(a) (b) 

 

(a) (b) (a) (b)

Figure 13
Water saturation feature importance.

 

Table 4
CatBoost regressor performance.

  MAE MSE RMSE 

Train dataset 0.085306 0.010847 0.104150

Test dataset 0.106524 0.015872 0.125986

MT dataset 0.102435 0.017520 0.132363

MD-T dataset 0.103773 0.015775 0.125599
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As shown in the cross-validation plot, the model 
is overfitting, which is caused by the lack of data. 
The residual plots show that the predictions were 
well-distributed and did not follow a certain pat-
tern. The feature importance of this prediction relies 
heavily on Y coordinates. This should not be true, 
as water saturation prediction relies mainly on well 
logs, especially resistivity logs. This problem is also 
caused by overfitting.

Figure 14
Residual plot from a model developed without proper workflow.

Figure 15
Feature importance from a model developed without proper workflow.

Comparison With and Without Proper Work-
flow 

Machine learning cannot be blindly used. 
Problems such as overfitting and underfitting can 
happen to the model without a proper workflow. 
Feature selection will not work as intended, as it 
could select irrelevant features to be used. This will 
result in an overlearning model that cannot be used 
outside the original dataset. In this case, feature 
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ranking should rank well-log data above coordinate 
and depth data. However, improper workflow would 
result in an undesired feature rank. Additionally, 
when observing the residual plot, a flawed workflow 
would lead to distribution with a noticeable pattern, 
which is undesirable. Figure 14 and Figure 15 show 
a residual plot and feature ranking from a model 
developed without a proper workflow.

CONCLUSION

A calculated and precise workflow is essential in 
developing a machine-learning model. With the cor-
rect workflow, traps and pitfalls could be prevented 
or minimized. In this case, the effect of overfitting in 
the relatively small dataset could be minimized, and 
further problems were prevented. The model could 
predict porosity and water saturation value based 
on relevant well logs with an acceptable accuracy.
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