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ABSTRACT

A single phase  flow model has been developed for gas distribution pipeline networks.
The model is developed based on looped-system approach with some modifications. In this
model, a equation of state model is implemented for predicting the gas  properties required
for the governing equations of the network system. By utilizing the Linear Theory Method,
the  Panhandle’s single phase gas flow model is implemented in this model to predict the
hydrodynamic variables in each leg of the network using the iterative technique which is
developed in this study. A generalization of the single phase network model is provided
thereby making it possible for the single flow model used to be replaced by another one
that may be more applicable for a particular situation. Using the iterative procedure devel-
oped, pressure at all nodes, gas flow rate at each leg can be predicted. The test results
demonstrate that the model can serve as a predictive and design tool for solving a single
phase gas flow problem in pipeline network.
Keyword : A single phase model, gas pipeline networks

I.  INTRODUCTION
Natural  gas collected from producing wells is

often distributed to the consumer via pipeline net-
works. With the ever increasing use of natural gas,
pipeline network are becoming larger and more com-
plex. The design and analysis of these complex pipe-
line networks often involve extensive calculation. The
problem of compressible fluid flow through pipelines
and conduit has been studied by many investigator.
For pipelines, the most commonly used equations  for
these calculation are the Weymouth (equation) or the
Panhandle equations.

One of common features of gas gathering and
distribution system is that they are usually made up
of network of a pipelines with complex arrays of loops,
nodes, compression stations, etc. In order to optimize
such a system, a system analysis approach is called
for. This has not been possible mainly because of the
process modeling intricacies involved. One aspect of
this problem that is almost intractably challenging is
the hydrodynamic behavior of a network of pipelines
under single phase conditions. Even though the op-

eration of a gas gathering and/or distribution pipeline
network is anything but steady, it is not  uncommon
to assume steady state flow in order to simplify the
problem and render it tractable.

The main objective of this work is to attempt a
formulation of a network model for gas pipeline net-
work. Single phase approach is used in conjunction
with Panhandle’s equation serving as the model for
estimating hydrodynamic variables in any leg of the
network. This variable include pressure drop. This
model is coupled to Peng Robinson equation of state
based phase behavior model, to render the model
single phase. The resulting model is reformulated into
a form that expresses pressure loss as function of
mass flow rate. The functional form is implicit rather
than explicit. It should be recalled  that the conven-
tional head loss model used in pipeline network analy-
sis are usually explicit, thus making them amenable
to the standard formulation strategies. By invoking
continuity equation at each node in the network and
energy conservation in each loop, using mass flow
rate throughout rather than volumetric flow rate, the
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complete set of network equations are formulated.
Solution of these equation is accomplished by using
the Linear Theory Method.

II. FORMULATION OF THE MODEL

The model formulated to resolve a single
phase gas flow problem in a complex network of pipe-
lines consists of three main components. These are
the single phase flow model, the looped network analy-
sis model, and the phase behavior model. The appli-
cation behavior in this model is mainly to determine
the phase properties which are required for the gov-
erning equations. The Peng-Robinson equation of
state (1976) is used as the basis for the phase behav-
ior model. The model predicts the thermo physical
properties of the single phase, for either single-com-
ponent or multi component systems.

The looped network model is basically developed
by adopting Kirchhoff’s laws for electrical circuits.
Cross developed a looped network model for pipe-
line system by applying the continuity equations and
the energy equations at the node (junction) and the
loop, respectively. The energy loss in each leg of the
loop is required for the energy balance equation. This
is supplied by a formulated Panhandle single phase
flow equation.

In formulating the model, four major assumptions
are made. They are :
1. Fluid temperature is constant across the system,
2. Steady state conditions,
3. Fluid composition is uniform across the system,
4. Effects of elbows, valves, fitting, or meters are

ignored.

A. The Single phase Flow Model

In order to predict single phase gas flow behav-
ior in pipeline network, any single phase gas flow
model can be implemented in the model by coupling
it to the system of equations for the network system.
It will be assume that the single phase gas flow model
is expressible in the form:

i
iii QP αγ=Δ                        (1)

Equation (1) is the conventional non-linear relation-
ship between pressure drop and flow rate. Each of
the term in the energy balance equations for each
loop in the network takes this form. Using the Linear
Theory Method, equation (1) can be linearized as

follows :

iiii QQP i )1( −=Δ αγ                                    (2)

Defining,
)1( −= i

iii Q αγβ                        (3)

By substituting equation (3) into equation (2), the
single phase gas flow equation can be expressed as

iii QP β=Δ            (4)
The pressure drop in equation (4) can also be ex-
pressed in terms of mass flow rate, Wg , instead of
volumetric gas flow rate, Qi. This relationship can be
written as

           (5)
Where i indicates pipeline number.

The single phase gas flow equation can be written as
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Using algebraic manipulation, equation (6) can be
expressed in the same form as equation (5) where
hi, is defined by
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The derivation of the expression for C1 and C2 fol-
lows. In this model, single phase gas flow model is
implemented in the system of equations for a net-
work system to predict single phase flow perfor-
mances of gas flow in pipelines. In order to imple-
ment this model into the network equations, the single
phase gas flow equations needs to be rearranged in
such a way that the pressure loss is presented in term
of  the mass flow rate. In this case, the linier theory
method is used to linearize  the flow equation.

Defining that,  pg AvW ρ=                        (8)

Using equation (8), the gradient pressure shown in
equation (6) becomes

               (9)
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{ }2
21 gWCCZP +Δ=Δ          (10)

Where

θρ sin1 g
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gC =                                  (11)
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Friction factor gas, fg, can using  Panhandle-A  equa-
tion

 147.0
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or  using Panhandle-B  equation
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Using the Linear Theory Method, the pressure gra-
dient equation becomes
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11 ++ =Δ n
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or
11 ++ Δ= nn

g PW η                      (18)

For the i-th leg, the equation is written as
11 ++ Δ= n

ii
n

gi PW η                      (19)

B. The Pipeline Network Model

In order to properly set up the system of equa-
tions for a network system using this model, certain
rules and conventions must be defined. These con-
ventions are expressed below:
1. In each loop, the assigned flow direction in all the

legs must be the same, clock-wise or counter clock
wise. Initially (i.e. at the beginning of iterative pro-

cess), the flow is assumed to be positive in the
assigned direction. Of course, before the termi-
nation of the iterative process, each flow will as-
sume the appropriate sign to satisfy continuity at
each node and energy balance in each loop.

2. The flow in a leg common to two loops must have
the same flow direction.

3. The flow leaving from a node is assigned a nega-
tive sign, while the flow coming to the node is
given a positive sign.

4. Each node must be specified by an integer num-
ber. This number is completely arbitrary with the
condition that numbering starts from 1 and increase
sequentially.

5. Similarly, each loop must be specified by an inte-
ger number arbitrarily. However, the number used
in the system must start from 1 and increase se-
quentially.

Figure 1 shows an example of a looped pipeline

network system consists of 4 nodes and 2 loops.

C. The Continuity Equations

By adopting Kirchhoff’s  laws for any junctions
in a closed circuit system, the continuity equation can
be applied for each node and expressed as

0)(
1

=∑
=

ijp

N

j
Av

i

ρ ; i = 1,….,N          (20)

Figure 1
The example of a looped pipeline

network system
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or, in general, equation (19) can be written as

0)(
1
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=
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i

; i = 1,…., N          (21)

In the presence of the mass flow rate coming from
an external source or supply and leaving from the
system or demand, the continuity equation can be
written as

iiijg

N

j
SDW

i

−=∑
=

)(
1

; i = 1,….,N    (22)

Where
i =  i-th node within the network
j =  j-th leg connected to node i
Ni =  number of legs connected to node i
N =  total number of nodes within the network
Di =  demand or flow leaving the system from the i-

th node
Si =  supply or flow coming

into the system through
node i

D. The Energy Equations

By adopting the Kirchhoff’s
loop law for any closed circuit,
the energy equations for the
looped network system can be
written in the following form:

∑
=

=Δ
lN

k
klP

1

0  ; l = 1,…., M (23)

Where
kl =  k-th leg in the l-th loop
l =  l –th loop within the net-

work
Nl =  number of legs within the

1-th loop
M = total number of loops

within the network
The system of equations for

the pipe network, therefore, con-
sists of both continuity and en-
ergy balance, which are ex-
pressed by equations (22) and
(23), repectively. With the net-
work made of  N nodes, we can

write N continuity equations. However, only N-1 of
these equations are linearly independent, hence only
these many are admissible. For each of the M loops,
one energy balance equation can be written giving M
non-linier independent equations. It can be proved
that a pipe network made up of  N nodes, M non-
overlaooing loops and L legs will satisfy the equation
L=(N-1)+M. This means that M = (L – N + 1). Thus,
we can write (L – N +1) energy equations. There-
fore, the total number of equations we have is (N-1)
+ (L-N+1) or L equations. Since the unknown are
the L flow rates in the legs (from which pressure can
be calculated by using equations (5), we have a com-
plete set of equations which can be solved for these
flow rates. By considering a pipeline network sys-
tem as shown in Figure 2, the following is an ex-
ample of the system of equations generated for that
system using the above system of equations (21) and
(22).

Figure 2
The Flow chart of the calculation procedure
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2. Using the hydrodynamic and gas properties of the
system, find the coefficient factor of each leg, ηi

3. Compute the elements of matrix A as defined in
equation (30).
Using the above algorithms, the coefficients of

matrix A can be determined using the information
obtained from the input mode. This algorithm is quite
simple and general. It is capable of handling arbitrary
identification of the elements of the network. The
iteration procedure is detailed out in a flow chart (see
Figure 2).

IV. EXAMPLE ANALYZING GAS PIPELINE
NETWORKS

In this study, the model was tested using vari-
ous hypothetical data of pipe line network and using
friction factor Panhandle-A  equa-
tion. For this case, the network
consists of  21 pipe legs, 15 nodes,
and 7 loops. The fluid data used
for testing  this model consists of
specific gravity (0.697) and tem-
perature (540 R).
The input data used to test this
model include :
- (S)upply or flow rate coming

to the system (Mscf/D)
- (D)emand or flow rate leaving

the system (Mscf/D)
- Pipeline length (ft)
- Pipeline diameter (in)
- (P)ressure (psi)
- Temperature (R)
- Elevation (ft)
The results of the test example
which are presented in Figure 3
and Table 1 include :
- (S)upply or flow rate coming

to the system (Mscf/D)
- (D)emand or flow rate leaving

the system (Mscf/D)
- Pipeline length (ft)
- Pipeline diameter (in)
- (P)ressure at each node (psi)
- Gas flow rate in each leg

(Mscf/D)

From the test, it is also found that number of it-
erations required to converge. The iteration required
to converge is 26.

V.  CONCLUSIONS

a.  The results of prediction obtained from this test
shows that the model is capable of predicting  pres-
sure distribution at each node and gas flow rate in
each leg for a pipeline network.

b. Data input handling is simple and the results are
also displayed in a way that make it attractive to
engineers involved in analyzing pipeline networks.

NOMENCLATURE

A =  Square matrix of the system of equations
Ap =  Cross-sectional area of pipe, ft2

Table 1
Predicted pressure loss
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B =  Matrix coefficients whose values are +1 or -1
or 0

D =  Demand, lbm/D
D =  inside pipe diameter, in
F =  pipe friction factor
g =  Gravity acceleration, ft/s2

gc =  Conversion factor
k =  time level in the iteration calculation
L =  Total number of legs
N =  Total number of nodes
M =  Total number of loop in a network
R =  Right hand side of the system of equations
P =  Pressure, psi
Qg =  Volumetric gas flow rate, cuft/D
S =  Supply, lbm/D
T =  Temperature, Rankine
Wg =  Mass flow rate of gas, lbm/D
Z =  Length or distance, ft
fg =  friction factor gas
μ =  viscosity, cp
η =  Single flow equation coefficient
ρ =  density, lbm/ft3

ε =  tolerance

Subscripts

g =  gas phase

Superscripts

k =  Time level
→ =  Vector
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