PENGARUH PENCAMPURAN KEROSIN TERHADAP SOLAR

Oleh:
Subardjo Pangarso

S A R I

Tujuan penelitian ini adalah untuk mengetahui pengaruh pencampuran kerosin terhadap minyak solar. Sasaran yang akan dicapai adalah seberapa jauh pengaruh kerosin terhadap spesifikasi yang telah ditetapkan bagi minyak solar yang beredar di pasaran Indonesia.

Pelaksanaan penelitian dimulai dari analisa bahan baku yang diambil dari pasaran, yakni solar dan kerosin terhadap sifat-sifatnya, kemudian meningkat pada analisa hasil pencampurannya (blending) dengan berbagai perbandingan volume. Sifat-sifat bahan bakar yang dianalisa pada bahan baku maupun campuranya adalah: Berat Jenis pada 60/60°F, Titik Nyala "PM CC"; Viskositas Kinematic pada 100°F, Penyulingan dan Indeks Setana.

Dari hasil penelitian yang diperoleh ternyata bahwa dengan penambahan kerosin sebanyak 16.7% volume dalam minyak solar masih memenuhi spesifikasi yang telah ditentukan.

A B S T R A C T

Here is the result of a research on the effect of blending between kerosene and diesel oil. Its aim is to see how far the influence of kerosene on specification that has been fixed with diesel oil circulated in the Indonesian markets.

The implementation of the research is started from analysis of raw material taken from the market, namely diesel oil and kerosene against their effect followed by their blending by various volume comparison. The fuels characteristics being analysed on the raw material and their blending is specific gravity at 60°F, Flash Point "PM CC", Kinematic Viscosity at 100°F, Distillation and Cetane Index.

The conclusion of the research is reported to be that the addition of 16.7% of kerosene to the diesel oil that remains meeting the specification being determined.

I. PENDAHULUAN

Kebijaksanaan penentuan harga kerosin yang rendah dimaksudkan untuk dapat memenuhi keperluan rakyat banyak dalam penggunaan sebagai minyak lampu dan bahan bakar kompor. Tetapi harga yang relatif murah ini juga menunjukkan kecenderungan penyalaahkan kerosin.

Mengingat harga kerosin jauh lebih rendah jika dibandingkan dengan harga solar, maka ada kemungkinan bahan bakar solar tersebut dicampur kerosin sebagai bahan bakar mesin diesel. Sebab pada dasarnya kerosin dan solar adalah fraksi minyak bumi yang saling bertautan dan dapat bercampur secara sempurna.

Dengan demikian maka dipandang perlu diadakan suatu penelitian tentang seberapa jauh pengaruh pencampuran kerosin terhadap solar yang masih memenuhi spesifikasi yang ditentukan pemerintah Indonesia.

Penelitian dilakukan di PPPTMGB "LEMIGAS" serta pengolahan data hasil percobaan memakai perhitungan statistik de-
ngan komputer, menggunakan paket program Statistical Package for Social Science (SPSSX).

II. TINJAUALUMUM.

A. Kerosin

Kerosin adalah produk minyak bumi dengan daerah titik didih antara 150° C sampai 300°C. Kerosin juga disebut minyak tanah sebagai minyak lampu dan bahan bakar kompor di dalam rumah tangga, merupakan produk minyak bumi yang stabil dan tidak memerlukan penambahan aditif untuk memperbaiki mutunya.

Muti yang baik untuk minyak ini di dalam penggunaan harus memenuhi persyaratan tertentu, yaitu:

1. Syarat pembakaran

Kerosin harus memberikan nyala yang baik dan tidak berasap, karena asap merupakan hasil pembakaran tidak sempurna yang terdiri dari butir-butir arang halus.

Sifat pembakaran ini biasanya diukur dengan titik asap (smoke point). Di samping itu kerosin juga tidak boleh meninggalkan kerak pada sumbu dan hal ini dibatasi dengan maksimum nilai kerak (char value).

2. Syarat kebersihan

Kerosin kalau dibakar kecuali tidak boleh mengeluarkan bau asap, hasil pembakaran juga harus tidak membahayakan.

Kandungan bejerang yang cukup tinggi menimbun gas sulfur dioksida yang berbau keras serta kerosin.

3. Syarat keamanan

Penggunaan kerosin di rumah tangga, tidak boleh terlalu mudah menguat dan mudah terbakar.

Untuk ini perlu pembatasan titik nyala (flash point) minimum.

B. Solar

Solar adalah salah satu produk minyak bumi yang mempunyai daerah titik didih antara 230° C sampai sekitar 350° C.

Solar digunakan sebagai bahan bakar mesin diesel.

Sifatnya kerosin, solar pun dalam penggunaannya harus memenuhi syarat-syarat tertentu.

1. Penyalaan

Sifat penyalaan dalam bahan bakar diesel dinilai dengan angka setana (Cetane Number) diukur dengan mesin pengukur standard.

Dengan sifat penyalaan yang sesuai dengan kebutuhan mesin, akan terjadi pembakaran yang teratur tanpa adanya ketukan.

Sifat penyalaan ini dapat pula dinilai dari indeks setana (cetana index), diperoleh dari pemeriksaan laboratorium dan dihitung tanpa menggunakan tersebut di atas.

2. Penguapan

Sifat penguapan dinilai dari titik nyala serta uji penyulingan.

3. Syarat pemompaan dan penyempohonan

Minyak solar harus cukup encer dan cair agar mudah dalam pemompaan dan penyempohonan (atomisasi). Untuk itu viskoitas (viscosity), titik tuang (pour point) dan titik keruh (cloud point) ditentukan batas-batasnya.

4. Syarat kebersihan

Syarat kebersihan solar perlu diperhatikan agar tidak mengganggu kelancaran aliran dan pembakaran. Dalam hal ini kandungan air, adanya sedimen diberi batasan maksimum. Demikian pula untuk kandungan bejerang dan residu karbon (arang pembakaran).

III. HIPOTESA

Kerosin dan Solar merupakan fraksi minyak bumi yang saling bertautan dan saling mempengaruhi. Hal ini dapat dilihat dari harga daerah titik didihnya. Titik didih kerosin antara 150° C sampai dengan 300° C sedangkan Solar 230° C sampai dengan 350° C.

Oleh karena itu untuk mengetahui seberapa

Harga Berat Jenis campuran Kerosin dan Solar yang masuk batasan adalah pada saat penambahan Kerosin sampai dengan 63.5% volume, sesuai batasan Berat Jenis pada 60/60° F menurut peraturan adalah 0,820 sampai dengan 0,870.

B. Analisa Pencampuran Kerosin Terhadap Solar

1. Berat Jenis pada 60/60°F, ASTM D 1298

<table>
<thead>
<tr>
<th>Kerosin (% vol)</th>
<th>Solar (% vol)</th>
<th>BD 60/60°F</th>
<th>BD 60/60°F (terkoreksi)</th>
<th>Relasi Kesanahan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0,8480</td>
<td>0,8480</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>0,8435</td>
<td>0,8436</td>
<td>0,0474</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>0,8396</td>
<td>0,8290</td>
<td>0,1199</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>0,8360</td>
<td>0,8350</td>
<td>0,1196</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>0,8323</td>
<td>0,8310</td>
<td>0,1202</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>0,8282</td>
<td>0,8260</td>
<td>0,2415</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>0,8239</td>
<td>0,8220</td>
<td>0,2427</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>0,8203</td>
<td>0,8170</td>
<td>0,3672</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>0,8165</td>
<td>0,8130</td>
<td>0,4896</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>0,8121</td>
<td>0,8090</td>
<td>0,4926</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0,8040</td>
<td>0,8040</td>
<td>0</td>
</tr>
</tbody>
</table>

Hubungan antara pencampuran Kerosin dan Solar terhadap Indeks Setana dinyatakan dengan persamaan sebagai berikut:

\[Y = 61,845 - 0,155X \]

bila: \(Y = \text{Indeks Setana} \)
\(X = \text{Penambahan Kerosin Terhadap Solar}, \% \text{vol.} \)

Dengan relasi rata-rata 1,62%.

2. Indeks Setana, ASTM D 613

<table>
<thead>
<tr>
<th>Kerosin (% vol)</th>
<th>Solar (% vol)</th>
<th>Indeks Setana</th>
<th>Indeks Setana terkoreksi</th>
<th>Ralat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>61</td>
<td>61,845</td>
<td>1,38</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>60</td>
<td>60,295</td>
<td>3,83</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>59,5</td>
<td>58,745</td>
<td>1,26</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>58</td>
<td>57,195</td>
<td>3,59</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>56,5</td>
<td>55,645</td>
<td>1,51</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>55</td>
<td>54,049</td>
<td>6,03</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>53,5</td>
<td>52,545</td>
<td>1,05</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>52</td>
<td>50,995</td>
<td>3,02</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>48,5</td>
<td>49,445</td>
<td>1,95</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>47,7</td>
<td>47,895</td>
<td>0,01</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>47,3</td>
<td>46,345</td>
<td>2,43</td>
</tr>
</tbody>
</table>

Hubungan antara pencampuran Kerosin dan Solar terhadap Perolehan pada 300°C dinyatakan dengan persamaan: \(Y = 48 + 0,517X \). dalam hal ini \(Y = \text{Perolehan pada 300°C, } \% \text{vol.} \) Sedangkan \(X = \text{Penambahan Kerosin terhadap Solar, } \% \text{vol.} \). Dengan ralat rata-rata 0,839%.

Ternyata semakin besar penambahan Kerosin terhadap Solar akan Perolehan pada 300°C campurannya akan semakin naik. Hal ini disebabkan karena semakin banyak terdapat fraksi ringan dalam campuran tersebut sehingga cairan yang dikembalikan sebagai distilat semakin banyak jumlahnya.

Batasan perolehan pada 300°C menurut peraturan adalah minimum 40% volume.

Oleh karena itu hasil analisa perolehan pada 300°C campuran yang masih batasan adalah pada saat penambahan Kerosin sampai lebih 90% volume.

Hubungan antara pencampuran Kerosin dan Solar terhadap viskositas Kinematik pada 300°C dinyatakan dengan persamaan: \(Y = 48 + 0,517X \). dalam hal ini \(Y = \text{Viskositas Kinematik pada 300°C, cSt.} \) Sedangkan \(X = \text{Penambahan Kerosin terhadap Solar, } \% \text{vol.} \). Dengan ralat rata-rata 0,839%.

Batasan viskositas Kinematik pada 300°C menurut peraturan adalah minimum 4 cSt.
100° F dinyatakan dengan persamaan berikut:
Y = 4,4502 - 0.0361 X, dengan Y adalah viskositas Kinematik dan X penambahan % vol. Kerosin.
Dengan ralat rata-rata 7,09%.
Hasil analisa ini yang masuk batasan adalah pada saat penambahan Kerosin sampai dengan 79,9% volume. Sebab batasan yang diberikan adalah 1,6 cSt sampai dengan 5,8 cSt.

4. Viskositas Kinematik pada 100°F.

<table>
<thead>
<tr>
<th>Kerosin (% vol)</th>
<th>Solar (% vol)</th>
<th>Viskositas pada 100°F cSt</th>
<th>Viskositas pada 100°F terkoerksi, cSt</th>
<th>Ralat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>4,8464</td>
<td>4,4502</td>
<td>8,18</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>4,1587</td>
<td>4,0892</td>
<td>1,67</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>3,5733</td>
<td>3,7282</td>
<td>4,33</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>3,3367</td>
<td>3,3672</td>
<td>0,07</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>2,8241</td>
<td>3,0062</td>
<td>6,45</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>2,2854</td>
<td>2,6452</td>
<td>15,74</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>2,1342</td>
<td>2,2848</td>
<td>8,05</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>1,9554</td>
<td>1,9232</td>
<td>3,62</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>1,5956</td>
<td>1,5622</td>
<td>2,09</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>1,3157</td>
<td>1,2012</td>
<td>8,70</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>1,0388</td>
<td>0,8402</td>
<td>29,12</td>
</tr>
</tbody>
</table>

5. Titik Nyala "PM CC", ASTM D 93

<table>
<thead>
<tr>
<th>Kerosin (% vol)</th>
<th>Solar (% vol)</th>
<th>Titik Nyala °F</th>
<th>Titik Nyala terkoerksi °F</th>
<th>Ralat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>200</td>
<td>172,69</td>
<td>13,68</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>168</td>
<td>164,14</td>
<td>2,12</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>148</td>
<td>156,24</td>
<td>5,57</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>134</td>
<td>148,04</td>
<td>10,48</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>128</td>
<td>139,84</td>
<td>2,25</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>122</td>
<td>131,64</td>
<td>7,90</td>
</tr>
<tr>
<td>60</td>
<td>40</td>
<td>118</td>
<td>123,44</td>
<td>4,61</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>112</td>
<td>115,29</td>
<td>3,43</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>106</td>
<td>107,09</td>
<td>0,08</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>106</td>
<td>98,84</td>
<td>6,75</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>104</td>
<td>90,64</td>
<td>12,85</td>
</tr>
</tbody>
</table>

Hubungan antara pencampuran Kerosin dan Solar terhadap Titik Nyala dinyatakan dengan persamaan sebagai berikut:
Y = 172,69 - 0,82 X
Ralat = 4,146%.

5. Titik Nyala "PM CC", ASTM D 93

Hubungan antara pencampuran Kerosin dan Solar terhadap Titik Nyala dinyatakan dengan persamaan sebagai berikut:
Y = 172,69 - 0,82 X
Ralat = 4,146%.

Harga Titik Nyala yang masuk batasan adalah pada saat penambahan Kerosin sampai dengan 27,7% volume, sebab batasan yang diberikan minimum 150°F.

Hasil analisa campuran Kerosin dan Solar yang memenuhi spesifikasi minyak bakar Indonesia sesuai dengan peraturan Direktorat Jenderal Minyak dan Gas Bumi Nomor 002/P/DM/Migas/1979.

Melihat seluruh sifat-sifat yang diperiksa tersebut di atas, maka kunci penentu campuran adalah sifat penyalaan atau titik nyala. Secara perhitungan kerosin yang dapat ditambahkan pada solar 27,7% untuk mendapatkan titik nyala 150°F. Tetapi mengingat batas beda ketelitian pemeriksaan 90°F (ASTM D 93 - 1984) maka batas aman penambahan yang memenuhi persyaratan spesifikasi adalah pada nilai titik nyala 159°F, yaitu dengan penambahan kerosin sekitar 16,7%.

VI. KESIMPULAN

Dari penelitian ini terbukti bahwa penambahan Kerosin terhadap solar yang masih memenuhi persyaratan spesifikasi bahan bakar diesel adalah pencampuran sampai dengan 16,7% volume, sebab pada prosentase inilah semua sifat sebagai bahan bakan solar masih memenuhi persyaratan spesifikasi In-

Pencampuran kerosin ke dalam solar ini bila dilihat pengaruhnya pada pengamatan hasil uji penyulingan maka jumlah fraksi ringan menjadi besar. Bila ditinjau ketentuan dalam spesifikasi, untuk solar hanya menetapkan "perolehan pada 300°C" minimum 40% vol tanpa mencakupkannya nilai batas maksimum. Dengan maksud agar dapat membatasi kemungkinan pencampuran kerosin ke dalam solar maka disarankan agar batas maksimum dicantumkan juga, yaitu sekitar 50% vol.

DAFTAR PUSTAKA

1. Annual Books of ASTM Standards, 1983 Petroleum Products, Lubricants, and Fossil Fuels, Vol. 05.01, 05.02, 05.03, Philadelphia, PA 19103,
P.T. USAYANA
CATERING DIVISION
Serving The Oil Industry
- Industrial Catering
- Labour Supply
- Camp Management

Jln. Surabaya No. 14
Jakarta Pusat
Telephone: 345158
Telex: 61582 YAKTA IA

ELNUSA
A SUBSIDIARY OF PERTAMINA
JL. S. PARMAN 105 - JAKARTA/11440. PO. BOX 234/JKT - 10002
CABLE: ELNUSA JAKARTA INDONESIA.
PHONE: 596411 JAKARTA TELEX: 44337.

DATA SERVICES:
- Seismic Processing
- Log Data Processing
- Geological Interpretation
- Well Data Processing

DATA ACQUISITION SERVICES:
- Seismic Survey
- Wireline Logging
- Mud Logging

INFORMATION SERVICES:
- Drilling Maintenance Information System
- Micro Film Filing System
- Exploration & Production Report
- Business Directory

TELECOMMUNICATION, LOGISTIC & OILFIELD SERVICES:
- Installation, Operation, Maintenance of Radio Communication System
- HF, VHF, UHF, Satellite
- Monitoring System & Radio Control
- Fixed Positioning
- Supply Room & Logistic Services
- For Oil Industry
- Hydraulic Workover Services
- Wireline & Production Test Services
- Coiled Tubing & Nitrogen Services
- Cementing Services

TRADING:
- Navigation & Telecommunication
 Motorola, Raytheon, Harris, King Radio
- Petroleum Equipment
 Baker Lifting System, Trico, Edwards, Fuji, Wallace & Tiernan, Rochester, WPA
- Chemicals & Steel
 EN-TECH, INRA, Oilwell Cement, Explosive, Tubular/Casing, Machining
- Computers
 General Automation, Sonoscopic, ELNUSA Computers