Potensi Pengembangan EOR untuk Peningkatan Produksi Minyak Indonesia

Usman

Peneliti Muda pada Pusat Penelitian dan Pengembangan Teknologi Minyak dan Gas Bumi "LEMIGAS" Jl. Ciledug Raya Kav. 109, Cipulir, Kebayoran Lama, Jakarta Selatan 12230, Indonesia

Tromol Pos: 6022/KBYB-Jakarta 12120, Telepon: 62-21-7394422, Faksimile: 62-21-7246150

upasarai@lemigas.esdm.go.id

Teregistrasi I Tanggal 27 Mei 2011; Diterima setelah perbaikan tanggal 28 Juli 2011

Disetujui terbit tanggal: 26 Agustus 2011

SARI

Basis data cadangan minyak dan gas bumi yang dikelola LEMIGAS menunjukkan bahwa sekitar 62% dari isi awal minyak ditempat masih tertinggal dalam reservoar setelah pengurasan primer dan sekunder. Jumlah terbesar dari potensi *enhanced oil recovery* (EOR) tersebut berada di wilayah Sumatera Tengan dan Selatan. Dominan dari potensi ini merupakan kandidat aplikasi EOR injeksi kimia dan CO₂. Sebagian kecil saja dari minyak ini dapat diproduksi akan memberi kontribusi yang berarti dalam meningkatkan produksi minyak Indonesia di masa mendatang. Implementasi EOR adalah proses yang kompleks dan setiap reservoar memerlukan spesifik operasi dan fluida injeksi. Oleh karena itu, proses evaluasi dan pengembangan proyek EOR perlu dilakukan sistimatis dan bertahap dari seleksi, evaluasi, uji coba hingga tahap aplikasi di lapangan. Berbagai inovasi teknologi telah dikembangkan untuk menghasilkan perbaikan dalam proses EOR. Paper ini menguraikan potensi EOR Indonesia serta sebarannya dan bidang riset yang perlu dikembangkan LEMIGAS untuk mendukung aplikasi EOR secara komersial di Indonesia. Sepintas deskripsi mengenai teknologi EOR juga disertakan dalam paper ini.

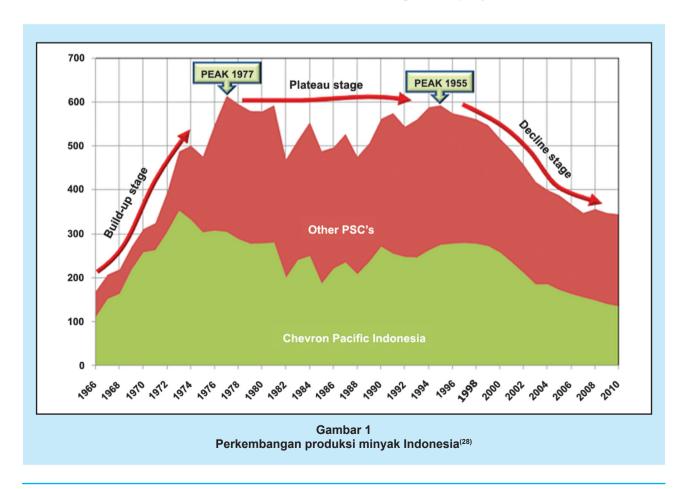
Kata kunci: LEMIGAS, produksi minyak Indonesia, teknologi EOR, potensi EOR Indonesia.

ABSTRACT

The oil and gas reserves database maintained by LEMIGAS indicates that 62% of the original oil in-place (OOIP) still remain in the reservoirs after primary and secondary recoveries. A considerable portion of this EOR target is located in reservoirs in Central and South Sumatera. Most of which are suitable for chemical and CO_2 EOR applications. Recovering even a small fraction of this oil will be an important contribution on the future of Indonesia oil production. EOR Implementation is complex and successful applications need to be tailored to each specific reservoir. Therefore, a systematic, staged evaluation and development process is required to screen, evaluate, pilot test, and apply EOR processes for particular applications. Various technological innovations developed that provide improved EOR process. This paper describes Indonesia's EOR potential and their distribution and area of research that needs to be developed by LEMIGAS to support commercial EOR application in Indonesia. A brief description of EOR technologies is also included in this paper.

Keywords: LEMIGAS, Indonesia oil production, EOR technology, Indonesia EOR potensial.

I. PENDAHULUAN


Cadangan minyak terbukti Indonesia per 1 Januari 2010 diperkirakan sebesar 4230 MMstb⁽²⁸⁾. Produksi rata-rata tahun 2009 adalah 348 MMstb. Dengan asumsi tidak ada penambahan cadangan baru, maka jumlah cadangan yang ada akan habis dalam dua belas tahun ke depan. Penambahan cadangan bisa karena ada penemuan lapangan minyak baru, perubahan status cadangan mungkin dan harapan menjadi cadangan terbukti karena penambahan data. dan atau karena keberhasilan implementasi teknologi pengurasan tahap lanjut atau EOR.

POTENSI PENGEMBANGAN EOR

Dalam pengurasan sumber daya tak terbarukan seperti minyak berlaku kaidah dasar yang diperkenalkan oleh King Hubbert pada era tahun lima puluhan bahwa produksi akan beranjak naik seiring dengan waktu sampai titik tertinggi yang bisa dicapai. Selanjutnya produksi akan turun hingga sumber daya tersebut habis. Produksi minyak Indonesia yang telah berlangsung hampir satu seperempat abad sejak pemboran discovery pertama melalui sumur Telaga Tunggal Nomor 1 tahun 1885 di wilayah konsesi Telaga Said, Tanjung Pura, Sumatera Utara⁽⁵⁾ juga mengikuti siklus Hubbert. Selama kurun waktu tersebut, produksi minyak Indonesia telah mengalami siklus Hubbert sebanyak dua kali seperti terlihat pada Gambar 1⁽²⁸⁾. Puncak produksi terjadi tahun 1977 dan 1995. Puncak produksi tahun 1977 merupakan produksi tertinggi dari pengurasan primer. Sedangkan puncak produksi tahun 1995 adalah hasil aplikasi metode EOR dengan injeksi uap panas (steam) di lapangan Duri. Pengembangan skala lapangan provek ini dimulai tahun 1985. Puncak produksi dicapai tahun 1995 sampai dengan 1999 yang tergambar pada profil produksi minyak dari Operator lapangan Duri.

Dari tahun 1995 hingga 2010, produksi minyak Indonesia terus menurun. Mulai tahun 2007, laju penurunan dapat dikurangi karena ada kontribusi dari lapangan baru yaitu Banyu Urip. Gambar 1 mengindikasikan bahwa untuk meningkatkan produksi minyak Indonesia atau untuk mendapatkan siklus Hubbert yang ketiga hanya dimungkinkan dengan penerapan teknologi EOR secara masif dan atau ada penemuan lapangan minyak baru yang cukup besar.

Paper ini menguraikan potensi EOR Indonesia serta sebarannya dan bidang riset yang perlu dikembangkan LEMIGAS untuk mendukung aplikasi EOR secara komersial di Indonesia. Potensi EOR Indonesia diperkirakan berdasarkan selisih isi minyak awal dengan pengambilan maksimum yang bisa diperoleh secara ekonomis berdasarkan teknologi yang digunakan saat ini. Usulan bidang riset didasarkan atas kapabilitas yang dimiliki LEMIGAS dan hasil

identifikasi teknologi EOR yang dibutuhkan untuk mengembangkan potensi EOR yang ada.

II. TEKNOLOGI EOR

Metode EOR diklasifikasikan dalam empat kategori utama yaitu pendesakan injeksi kimia (*chemical flooding*), injeksi gas tercampur (*miscible gas injection*), metode panas (*thermal*), dan proses lainnya misal dengan bantuan mikroba (*microbial*). Keempat kategori utama dan subkategorinya ditampilkan pada Gambar 2. Semua teknologi tersebut pada dasarnya berusaha memanipulasi parameter-parameter dalam persamaan Darcy, yang dinyatakan dengan Persamaan (1) untuk sistem linier horizontal, multi-fase:

Misal, injeksi surfaktan untuk memanipulasi permeabilitas relatif dengan cara mengurangi saturasi residual minyak. Injeksi polimer dimaksudkan memperbaiki area pengurasan di reservoar. Injeksi gas yang bercampur dengan minyak atau uap panas akan mengurangi viskositas minyak. Semua rekayasa tersebut di atas bermuara pada peningkatan laju alir minyak dan *present value* cadangan minyak tersebut. Berikut akan dibahas bagaimana merekayasa parameter-parameter dalam persamaan Darcy untuk mendapatkan laju alir minyak yang optimal.

A. Injeksi Kimia

Kemikal yang banyak digunakan selama ini adalah polimer, surfaktan, dan alkalin atau perpaduan dua atau tiga bahan kimia tersebut. Pada injeksi polimer, tipikal larutan *hydrolized polyacrylamide* dengan air formasi pada konsentrasi beberapa ratus hingga ribuan ppm polimer diinjeksikan untuk mendorong minyak ke sumur-sumur produksi. Ukuran *slug* polimer bervariasi dengan kisaran 50 hingga 100% *pore volume* (PV). Larutan dengan konsentrasi polimer tinggi diinjeksikan terlebih dahulu selama kurun waktu tertentu, kemudian diikuti oleh beberapa *slugs* konsentrasi rendah, dan terakhir dengan injeksi air formasi.

Larutan polimer didesain agar pendesakan *favorable* sehingga proses penyapuan minyak di reservoar berlangsung homogen seperti ilustrasi pada Gambar 3. Pada injeksi air, jika pendesakan *unfavorable*, air cenderung menerobos ke sumur produksi meninggalkan banyak minyak yang tidak terdesak. Kecen-

derungan ini semakin kuat pada reservoar dengan heterogenitas geologi tinggi.

Mekanisme utama yang berperan dalam peningkatan produksi minyak pada injeksi polimer adalah terjadinya peningkatan efisiensi penyapuan makroskopik hasil reduksi mobilitas larutan polimer menjadi kurang dari mobilitas minyak-air yang didesak. Peningkatan efisiensi penyapuan akan memperbesar parameter A dalam persamaan Darcy. Reduksi mobilitas terjadi karena dua hal. Pertama, larutan polimer mempunyai viskositas lebih besar dari air. Kedua, polyacrylamide dengan ukuran molekul yang besar akan terjerap pada permukaan porous media menyebabkan penurunan efektif permeabilitas porous media tersebut.

Penggunaan surfaktan dalam proses injeksi kimia bertujuan mengurangi tegangan antar muka atau *inter-facial tension* (IFT) antara fluida injeksi dengan minyak. Efek IFT terhadap perolehan minyak ditunjukkan pada Gambar 4, dimana saturasi residual minyak (S_{or}) fungsi dari bilangan kapiler $(N_c)^{(24)}$. Bilangan kapiler didefinisikan:

$$N_c = \frac{\nu \mu_w}{\sigma_w} \qquad \dots (2)$$

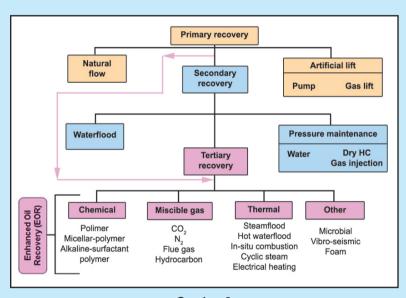
di mana $\mu_{_{\!\mathit{W}}}$ adalah kecepatan interstisial, $\sigma_{_{\!\mathit{OW}}}$ adalah viskositas fluida pendesak, dan s_{aw} adalah IFT antara fluida yang didesak dengan fluida pendesak. IFT harus diturunkan dari kisaran 10 hingga 30 dyne/cm pada tipikal injeksi air menjadi kurang dari 10⁻³ dyne/ cm untuk mendapatkan penurunan saturasi residual minyak setelah injeksi air yang signifikan⁽⁶⁾. Menurunkan saturasi residual minyak ke angka yang sangat kecil S' akan merubah kurva permeabilitas relatif minyak seperti ilustrasi dengan garis putus-putus pada Gambar 5⁽¹⁵⁾. Perubahan ini akan memperbaiki harga k_m dalam Persamaan (1) sehingga secara teoritis akan memperbesar laju produksi minyak. Untuk meningkatkan efisiensi pendesakan volumetrik, injeksi larutan surfaktan umumnya diikuti oleh injeksi larutan polimer. Proses ini dikenal sebagai injeksi misel-polimer atau surfaktan-polimer.

Pada injeksi alkalin, sistem larutan kimia dengan pH tinggi diinjeksikan ke dalam reservoar. Umumnya diterapkan pada reservoar minyak bersifat asam (petroleum acids)⁽⁶⁾. Alkalin injeksi akan bereaksi dengan fluida reservoar membentuk surfaktan di dalam reservoar. Surfaktan yang terbentuk akan

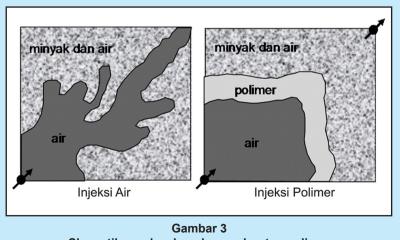
VOL. 45. NO. 2, AGUSTUS 2011: 91 - 102

memberikan efek pengurangan IFT. Perpaduan alkalin-surfaktan-polimer merupakan variasi lain dari injeksi kimia.

B. Injeksi Gas Tercampur


Injeksi gas tercampur adalah proses pendesakan minyak oleh fluida yang akan bercampur dengan minyak membentuk satu fase pada kondisi reservoar. Fluida pendesak yang umum digunakan adalah gas CO₂, N₂, LPG, dan *flue gas*. Parameter penting yang perlu diketahui pada proses injeksi gas tercampur adalah tekanan pencampuran minimum (MMP). Tekanan ini spesifik untuk setiap reservoar. Pendesakan gas tercampur hanya terjadi bila tekanan reservoar

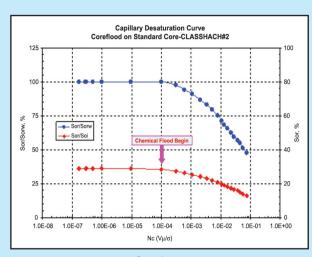
di atas MMP. Mekanisme utama yang bekerja pada injeksi gas tercampur adalah pengurangan viskositas minyak yang secara teoritis menurut persamaan Darcy akan memperbesar laju alir minyak. Mekanisme lain yang bekerja adalah gas injeksi akan meningkatkan saturasi minyak. Ilustrasi pada Gambar 5 memperlihatkan saturasi minyak setelah injeksi air adalah S_{ar} dimana minyak tidak akan mengalir karena k_{m} sama dengan nol. Dengan injeksi gas tercampur akan diperoleh saturasi minyak di atas S_{ax} . Ini berarti menggeser titik A ke titik B pada kurva relatif permeabilitas yang memungkinkan minyak mengalir. Jika tekanan reservoar di bawah tekanan MMP, maka mekanisme yang dominan adalah efek swelling dari CO, yang menyebabkan minyak mengembang. Proses ini juga akan menyebabkan saturasi minyak meningkat(15, 20).


CO, diinjeksi ke dalam reservoar pada kondisi di atas temperatur kritisnya yaitu 31°C. Viskositas CO, pada kondisi injeksi sangat rendah antara 0,06 hingga 0,10 cp tergantung temperatur dan tekanan reservoar⁽¹⁰⁾. Hal ini menyebabkan mobilitas CO, jauh lebih tinggi dibandingkan mobilitas minyak dan air sehingga cenderung terjadi fingering (Gambar 2) yang mengakibatkan rendahnya efisiensi pendesakan makroskopik. Untuk memperbaiki hal ini, maka slug CO, dan air diinjeksi secara bergantian. Metode ini dikenal sebagai water-alternating-gas (WAG). Gambar 6 menampilkan ilustrasi proses WAG. Problem lain terkait CO, injeksi adalah perbedaan densitas antara CO₂ dengan air dan minyak. CO₃ yang lebih ringan cenderung bergerak ke bagian atas reservoar dan mendesak minyak hanya pada bagian tersebut. Karena alasan ini injeksi CO, pada beberapa kasus dilakukan pada top reservoar.

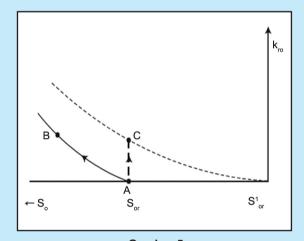
C. Injeksi Panas

Proses pengurasan minyak dengan metode panas terutama diterapkan pada reservoar yang mengan-

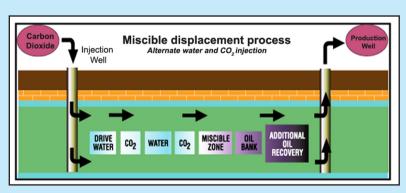
Gambar 2 Varian teknologi pengurasan primer, sekunder, dan EOR


Skematik pendesakan dengan larutan polimer

dung minyak berat dengan viskositas tinggi. Panas dapat disuplai dari luar reservoar melalui inieksi uap panas atau air panas atau dapat dibangkitkan dalam reservoar itu sendiri melalui pembakaran⁽²¹⁾. Pada proses injeksi dari luar, fluida panas diinjeksikan secara kontinyu melalui sejumlah sumur injeksi untuk mendesak minyak dalam reservoar ke sumur-sumur produksi. Panas yang dihasilkan akan mengurangi resistensi aliran dalam reservoar dengan cara menurunkan viskositas minyak. Penurunan viskositas merupakan mekanisme utama yang menyebabkan terjadinya peningkatan perolehan. Viskositas minyak berbanding terbalik dengan laju alir dalam Persamaan Darcy sehingga penurunan viskositas akan menaikan laju produksi. Faktor perolehan dapat mencapai 80% pada beberapa proyek injeksi uap panas. Peningkatan yang signifikan bila dibandingan tipikal perolehan pengurasan primer yang hanya berkisar antara 1 sampai dengan 10%⁽⁴⁾.

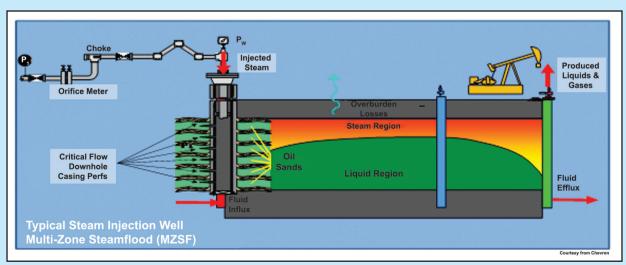

Injeksi panas dari luar yang banyak dikenal adalah injeksi air panas dan injeksi uap panas. Kedua fluida injeksi tersebut terutama berperan menurunkan viskositas minyak sehingga akan memperbaiki mobilitas minyak tersebut. Perbedaan yang signifikan adalah keberadaan efek kondensasi uap. Keberadaan fase gas menyebabkan komponen-komponen ringan hidrokarbon mengalami distilasi dan terbawa bersama uap sebagai fase gas. Proses distilasi, dilusi, dan stripping memberi kontribusi dalam menghasilkan saturasi residual minyak yang sangat rendah⁽³¹⁾. Ketika uap mengalami kondensasi, komponen hidrokarbon yang dapat terkondensasi juga mengalami hal yang sama sehingga akan mengurangi viskositas minyak pada zone kondensasi. Kondensasi uap membuat proses pendesakan lebih efisien. Jadi, kombinasi

pengurangan viskositas, peningkatan permeabilitas relatif, dan perluasan area penyapuan pada injeksi uap akan menghasilkan pengurasan minyak yang jauh lebih besar dibandingkan dengan injeksi air panas. Gambar 8 menampilkan ilustrasi proses pendesakan minyak dengan uap panas pada *multi zone* reservoar.


Pada metode pembakaran minyak di reservoar atau *in-situ combustion*, oksigen diinjeksikan ke dalam reservoar, minyak yang ada dalam reservoar kemudian dibakar dengan

Gambar 4 Hubungan saturasi residual minyak dengan bilangan kapiler⁽²⁴⁾

Gambar 5 Ilustrasi mobilisasi saturasi residual minyak setelah injeksi air⁽¹⁵⁾


Gambar 6
Ilisutrasi proses pendesakan dengan water alternating gas

menggunakan electrical igniter. Temperatur pembakaran berkisar antara 650 sampai dengan 1200°F (343 – 635°C)⁽⁶⁾. Mekanisme yang terjadi pada injeksi uap juga terjadi pada proses in-situ combustion. Saturasi minyak yang dibakar antara 0.05 hingga 0.12. Selebihnya akan didesak ke sumur sumur produksi. Panas yang dihasilkan akan terkonsentrasi pada zone pembakaran karena kapasitas panas udara sebagai fluida injeksi terlalu rendah untuk mentransfer panas secara signifikan. Karena alasan ini, maka air diinieksikan untuk mentransfer panas dari zone pembakaran ke zone yang berisi minyak original. Aplikasi in-situ combustion tidak sebanyak injeksi uap. Teknik ini terbatas digunakan pada reservoar dalam dan tekanan tinggi, yaitu lebih dari 3000 ft dan 2500 psi.

Cyclic steam stimulation yaitu stimulasi sumuran dengan injeksi uap secara berkala juga sering digunakan. Pada metode ini, uap diinjeksikan ke dalam sumur produksi selama periode tertentu, antara 2 hingga 4 minggu. Selanjutnya sumur ditutup beberapa hari dengan tujuan panas menyebar ke sekitar lubang sumur. Laju alir minyak saat sumur diproduksi kembali akan tinggi karena viskositas minyak berkurang drastis akibat kenaikan temperatur di reservoar. Seiring dengan produksi, temperatur akan menurun karena kehilangan panas secara konveksi melalui fluida terproduksi dan secara konduksi ke formasi yang terletak di atas dan di bawah reservoar. Laju alir minyak akan berkurang hingga mencapai batas keekonomian. Pada tahap ini, injeksi uap panas dilakukan kembali. Siklus tersebut pada beberapa reservoar dapat mencapai 20 kali⁽²¹⁾. Stimulasi injeksi uap panas hanya dapat dilakukan bila tenaga alami reservoar masih cukup besar mendorong minyak ke sumur-sumur produksi. Metode ini juga menjadi pilihan pada reservoar yang relatif kecil atau reservoar dengan konektifitas buruk dimana injeksi uap panas tidak ekonomis karena biaya investasi sumur sumur baru tidak dapat dikompensasi dari tambahan minyak yang diperoleh.

D. MEOR dan Vibrasi Seismik

Salah satu teknologi EOR yang tidak memerlukan investasi besar adalah microbial enhanced oil recovery (MEOR) yaitu penggunaan mikroba untuk peningkatan pengurasan minyak. Sayangnya kredibilitas teknologi ini belum sepenuhnya diakui oleh industri perminyakan karena alasan teknis dan ekonomis⁽²²⁾, walaupun sejumlah uji coba lapangan telah berhasil menunjukkan adanya peningkatan produksi minyak(14,23,18-19). Dari sisi ekonomis, dukungan finansial terhadap metode ini sangat lemah karena minimnya data yang menunjukkan adanya keuntungan ekonomis dari aplikasi MEOR. Dari sisi teknis, para peneliti dan praktisi MEOR tidak mampu menghilangkan persepsi bahwa proses aplikasi teknologi ini sangat kompleks⁽³⁾. Hasil penelitian dan uii coba lapangan menunjukkan bahwa sejumlah bakteri tertentu dalam reservoar bila diberi nutrisi dan bio-katalis yang sesuai akan dapat berkembang dan

Gambar 7 Ilisutrasi proses pendesakan dengan injeksi uap panas

USMAN

menghasilkan bio-surfaktan, alkohol, bio-polimer, gas, dan zat asam melalui proses metabolisme. Produk-produk tersebut seperti telah dijelaskan sebelumnya akan dapat meningkatkan produksi minyak dengan cara merubah saturasi minyak, sifat kebasahan batuan, serta memperbaiki efisiensi pendesakan. Beberapa mekanisme EOR yang bekerja simultan merupakan kelebihan utama MEOR dibandingan teknologi EOR lainnya disamping biaya yang relatif rendah serta ramah lingkungan.

Salah satu teknologi EOR yang juga relatif murah dan ramah lingkungan adalah vibroseismik. Metode ini menerapkan stimulasi gelombang elastik ke dalam reservoir dengan menggunakan vibrator dari permukaan. Studi laboratorium⁽¹⁾ menunjukkan bahwa vibrasi berdampak terhadap batuan dan fluida reservoar. Jika vibrasi dilakukan dengan frekuensi gelombang yang tepat akan dapat meningkatan porositas, menaikkan permeabilitas absolut, menurunkan saturasi residual minyak, menaikkan end-point permeabilitas relatif minyak, dan dapat menurunkan permeabilitas minyak. Namun vibrasi dapat menyebabkan kerusakan batuan jika digunakan frekuensi gelombang yang tidak tepat.

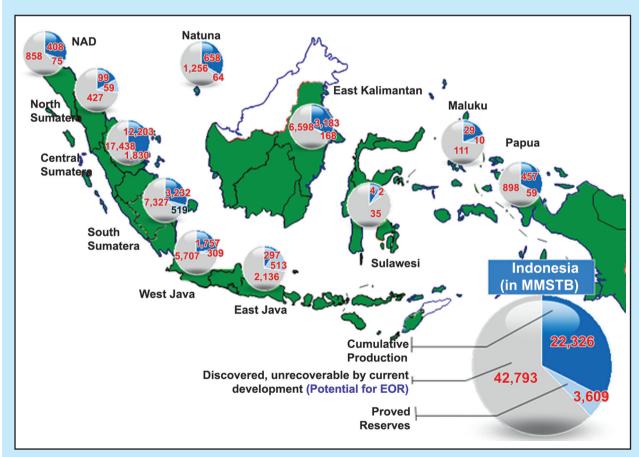
III. POTENSI EOR INDONESIA

Teknologi EOR sangat strategis bagi Indonesia. Pada tahun 2009, sekitar 20% produksi minyak Indonesia merupakan hasil dari aplikasi teknologi EOR dengan injeksi uap panas yang diterapkan di lapangan minyak Duri, Riau. Proyek ini adalah yang terbesar di dunia dari sisi jumlah minyak produksi dan jumlah uap injeksi⁽⁴⁾. Lapangan Duri ditemukan tahun 1941, mulai produksi tahun 1954. Pengurasan primer mencapai puncak produksi sekitar 65.000 barel per hari pada pertengahan tahun 1960-an dan diperkirakan maksimal perolehan minyak hanya sebesar 7% dari original oil in-place (OOIP) dengan pengurasan primer. Rendahnya perolehan ini karena minyak Duri sangat kental, tenaga dorong dari gas terlarut dan kompaksi juga sangat terbatas. Cyclic steam stimulation terbukti mampu meningkatkan produksi sumuran. Keberhasilan ini mendorong dilakukannya uji coba injeksi uap panas tahun 1975. Setelah proyek uji coba ini berhasil menambah perolehan minyak 30% maka pada tahun 1985 proyek skala lapangan dimulai di Area 1. Diperlukan waktu panjang lebih dari 10 tahun untuk sampai pada aplikasi skala lapangan. Saat ini, pengembangan lapangan Duri telah mencapai Area 12. Sukses injeksi uap panas di lapangan Duri telah meningkatkan produksi minyak nasional di akhir tahun 1980-an hingga mencapai puncak produksi tahun 1995 (Gambar 1). Sejak tahun 1995, produksi minyak nasional terus mengalami penurunan. Penerapan teknologi EOR secara masif diyakini akan mampu menahan laju penurunan produksi ini.

Berdasarkan data tahun 2010(28), diperkirakan terdapat 62% atau setara dengan 42.8 miliar barel dari OOIP masih tersimpan di dalam reservoar setelah tahap pengurasan primer dan sekunder (Gambar 8). Akumulasi minyak ini yang berasal dari sekitar 650 lapangan merupakan target EOR. Sekitar 58% dari target EOR tersebut berada di wilayah Sumatera Tengah dan Selatan. Identifikasi lapangan-lapangan minyak yang potensial untuk aplikasi teknologi EOR di kedua wilayah ini serta beberapa lokasi di Indonesia telah dilakukan⁽⁹⁾. Dari 23 lapangan yang diidentifikasi, 20 diantaranya merupakan kandidat injeksi kimia dengan akumulasi minyak setelah tahap pengurasan primer dan sekunder diperkirakan sebesar 49% dari akumulasi minyak awal (OOIP). Dua lapangan merupakan kandidat injeksi uap dengan perkiraan akumulasi sebesar 79% OOIP, dan satu lapangan kandidat injeksi gas CO, dengan perkiraan akumulasi sebesar 70% OOIP. Total volume minyak ke 23 lapangan tersebut setelah tahap pengurasan primer dan sekunder adalah 51% OOIP(28). Hasil studi yang dilakukan LEMIGAS⁽⁷⁾ di Sumatera Selatan memperlihatkan bahwa dari 136 reservoar yang dievaluasi, 64 reservoar diantaranya merupakan kandidat injeksi CO2. Jika sebagian kecil dari target EOR tersebut dapat diproduksi maka akan sangat berarti terhadap upaya peningkatan produksi minyak Indonesia. Data empiris menujukkan bahwa tambahan perolehan minyak dengan injeksi kimia bervariasi antara 0 sampai dengan 18% OOIP(17,10,33). Untuk injeksi gas CO2, rata rata tambahan perolehan sekitar 11%(6).

IV. RISET YANG DIPERLUKAN

Berbagai inovasi teknologi telah dikembangkan untuk menghasilkan perbaikan dalam proses EOR. Diantaranya yang telah dan sedang dikembangkan LEMIGAS adalah rekayasa surfaktan untuk meningkatkan perolehan dan pengembangan *streamline* simulasi untuk deskripsi reservoar. Riset rekayasa polimer, *viscosifier* CO₂, formulasi alkalin-surfaktan-


polimer (ASP), studi efek perubahan *wettability*, saturasi fluida, dan temperatur terhadap permeabilitas relatif sangat potensial dikembangkan oleh LEMIGAS.

Dari gambaran potensi EOR Indonesia terlihat bahwa sebagian besar minyak yang tersisa setelah tahap pengurasan primer dan sekunder dapat dikuras melalui injeksi kimia. Tujuan utama injeksi kimia adalah memperbaiki efisiensi penyapuan dengan mengurangi mobilitas fluida pendesak dan mengurangi saturasi residual minyak dengan menurunkan IFT antara fluida pendesak dan fluida yang didesak. Bahan kimia yang digunakan spesifik untuk setiap reservoar. Ini adalah peluang yang sangat besar bagi industri kimia untuk mengembangkan polimer, surfaktan, dan alkalin yang sesuai dengan karakteristik reservoar-reservoar di Indonesia. Dari sisi reservoar, kajian laboratorium dan pemodelan efek masing masing proses EOR terhadap permeabilitas relatif

sangat diperlukan. Seperti telah dijelaskan bahwa kurva permeabilitas relatif merupakan faktor penting dalam penentuan laju alir minyak dan perolehan minyak yang dapat terambil. Perubahan IFT dan wettability pada proses injeksi kimia, swelling minyak pada proses injeksi gas CO₂, dan efek temperatur pada injeksi uap akan mempengaruhi kurva permeabilitas relatif. Deskripsi pola aliran dalam reservoar juga merupakan faktor penting dalam implementasi EOR. Pengembangan teknologi simulasi reservoar dengan kemampuan deskripsi pola aliran fluida injeksi dan efisiensi komputasi sangat diperlukan dalam menentukan lokasi sumur injeksi dan laju injeksi optimum.

A. Polimer

Polimer komersial yang banyak digunakan dapat dikelompokkan ke dalam dua kelas generik, yaitu polyacrylamides dan polysaccharides⁽¹⁶⁾. Polyacryl-

Gambar 8
Target potensial EOR Indonesia status 01 Januari 2010.
Target potensial EOR merupakan akumulasi minyak yang sudah ditemukan namun belum dapat diproduksikan dengan teknologi yang diterapkan saat ini

amides saat digunakan dalam pendesakan minyak sebagian akan mengalami hidrolisis. Karena proses hidrolisis ini maka molekul polimer cenderung bermuatan negatif. Peningkatan viskositas larutan oleh polyacrylamides disebabkan oleh berat molekul besar hasil repulsi anionik antar molekul polimer dan juga antar segmen dalam molekul yang sama. Repulsi menyebabkan molekul dalam larutan memanjang dan akan berdampak terhadap reduksi mobilitas pada konsentrasi tinggi. Jika salinitas air formasi tinggi, repulsi akan menurun drastis dan akan mengurangi secara signifikan efektifitas polyacrylamides dalam meningkatkan viskositas. Polvacrylamides relatif tahan terhadap serangan bakteri yang ada dalam reservoar tapi memiliki kecenderungan menurunkan permeabilitas batuan. Riset untuk mengurangi kelemahan polyacrylamides ini sangat diperlukan karena lingkungan reservoar-reservoar minyak di Indonesia banyak yang berasosiasi dengan salinitas tinggi dan permeabilitas rendah sampai sedang.

Kelas polimer kedua adalah polysaccharides dihasilkan dari polimerisasi molekul molekul saccharide. Polysaccharides atau biopolimer yang diproduksi dari proses fermentasi bakteri. Proses ini menghasilkan banyak debris dalam polimer tersebut sehingga harus dibersihkan sebelum polimer diinjeksi. Polysaccharides juga rentan terhadap serangan bakteri dalam reservoar. Keunggulannya, polysaccharides relatif tahan terhadap salinitas tinggi dan tidak berpotensi mengurangi permeabilitas batuan. Polysaccharides tahan terhadap salinitas tinggi karena molekulnya tersusun dari molekul molekul nonionik yang bebas dari efek shielding. Kedua kelas polimer ini dikenal rentan terhadap temperatur tinggi sehingga terbuka peluang riset untuk mengatasi kelemahan ini.

B. Surfaktan

Berbeda dengan aplikasi polimer, injeksi surfaktan terutama diterapkan pada reservoar-reservoar dengan saturasi residual minyak signifikan. Surfaktan berfungsi menurunkan tegangan antar muka minyak air dan juga minyak dengan batuan. Dengan memperkecil tegangan antar muka, minyak yang terperangkap pada pori-pori batuan akan mudah dibebaskan. Polimer sering digunakan bersama-sama dengan larutan surfaktan untuk memperbaiki efisiensi pendesakan. Tipikal surfaktan terdiri dari bagian nonpolar (*lipophile*) dan bagian polar (*hydrophile*). Sifatsifat surfaktan sangat dipengaruhi oleh karakteristik

polar dan nonpolarnya. Perubahan sedikit terhadap struktur ini akan berpengaruh terhadap sifat-sifat surfaktan secara drastis. Karena sensitivitas inilah maka surfaktan EOR sangat spesifik untuk setiap reservoar. Pada aplikasi EOR, surfaktan akan berinteraksi dengan air formasi, minyak, dan batuan reservoar pada temperatur dan tekanan tertentu. Masing-masing reservoar memiliki karakteristik yang berbeda sehingga diperlukan formula khusus. Surfaktan yang umum digunakan adalah petroleum sulfonate yaitu sulfonate produksi kilang yang mempunyai berat molekul sedang seperti jenis aromatik dan olefin. Petroleum sulfonate banyak digunakan karena sangat efektif dalam mencapai nilai IFT rendah dan sangat stabil. Namun karena bahan dasarnya adalah petroleum yang relatif mahal dan tidak terbarukan, maka diperlukan bahan substitusi yang murah dan terbarukan. Riset untuk membuat surfaktan dengan bahan dasar nabati menggunakan metil ester dari kelapa sawit telah diinisiasi⁽¹²⁾. Persyaratan surfaktan EOR selain harus mempunyai nilai IFT yang lebih kecil dari 10⁻³ dyne/cm juga harus tahan terhadap panas, tidak ada kecenderungan presipitasi, adsorpsi oleh batuan relatif kecil, dan kompatibel dengan minyak reservoar disamping ramah terhadap lingkungan.

C. Formulasi Alkali-Surfaktan-Polimer

Pendesakan minyak dengan ASP sangat prospektif dalam menekan tingginya biaya sistem kemikal surfaktan-polimer^(6,2). Penambahan alkali akan mengurangi adsorpsi surfaktan-polimer dan menambah keaktifan surfaktan. Dengan komplementari efek ini akan membantu perbaikan kinerja pendesakan kimia⁽¹³⁾. Kriteria penting yang harus dipenuhi oleh campuran ketiga kemikal ini adalah larutan yang terbentuk harus stabil satu fase. Sodium hidroksida adalah jenis alkalin yang banyak digunakan namun dalam beberapa kasus mengalami kegagalan karena bereaksi dengan batuan reservoar membentuk silika dan menyumbat pori-pori batuan. Untuk formasi karbonat, alkalin dengan pH rendah diantaranya sodium karbonat atau bikarbonat dapat menjadi pilihan. Penggunaan alkalin tidak direkomendasikan jika kandungan CO, tinggi, atau jika kandungan lempung monmorilonit tinggi, dan jika keberadaan gipsum lebih besar lebih dari 0,1 persen (6).

D. Viscosifier CO,

Kelemahan utama injeksi gas CO₂ adalah kecenderungan terbentuknya *fingering* karena viskositas

CO, jauh lebih rendah dari viskositas minyak dan air. Sejumlah upaya telah dilakukan untuk membuat pengental CO₂ vang harus memenuhi kriteria murah, aman, dan stabil pada kondisi reservoar. Beberapa studi menunjukkan bahwa agar polimer dapat larut dalam CO, maka harus bersifat amorf dan mempunyai struktur iregular untuk memaksimalkan entropi pencampuran⁽¹¹⁾. Menentukan kesetimbangan antara CO₂-philic yang berperan terhadap kelarutan CO₂ dan CO₂-phobic sebagai fasilitator untuk meningkatkan viskositas CO, menjadi kunci dalam desain dan sintesa viscosifier CO₂⁽²⁾.

E. Studi Permeabilitas Relatif

POTENSI PENGEMBANGAN EOR

Permeabilitas relatif menggambarkan kemampuan media berpori mengalirkan suatu fluida bila terdapat dua atau lebih fluida dalam media berpori tersebut. Kurva permeabilitas relatif sangat penting dalam studi reservoar. Prediksi laju produksi dan perolehan minyak dari suatu reservoar ditentukan oleh kurva ini. Karakteristik kurva permeabilitas relatif dipengaruhi oleh geometri pori, wettability, saturasi fluida, temperatur reservoar, tekanan reservoar, jenis batuan, porositas dan permeabilitas. Faktor-faktor tersebut di atas terutama perubahan wettability, saturasi fluida, dan temperatur sangat umum terjadi dalam proses EOR. Riset mengenai efek perubahan faktorfaktor tersebut terhadap kurva relatif permeabilitas fluida dalam reservoar menjadi krusial^(20,21). Metode perhitungan permeabilitas relatif juga menjadi tantangan tersendiri dalam industri perminyakan saat ini. Metode JBN (Johnson, Bossler, and Neumann) yang menjadi acuan industri diturunkan berdasarkan asumsi tekanan kapiler diabaikan dan porous media homogen. Asumsi ini dapat menyebabkan kesalahan dalam perhitungan relatif permeabilitas⁽²⁾. X-ray computerized tomography (CT) dan simulasi numerik telah digunakan untuk menghasilkan permeabilitas relatif yang lebih akurat^(2,25-26).

F. Streamline Simulator

Salah satu keunggulan streamline simulator adalah kemampuan visualisasi dan kuantifikasi aliran dalam reservoar berdasarkan lokasi sumur dan laju alir injeksi, deskripsi geologi dan kontinuiti reservoar, sifat-sifat fluida reservoar, dan permeabilitas relatif. Streamline mampu menampilkan visualisasi bagaimana konektifitas reservoar dan berapa banyak fluida injeksi dialokasikan dari suatu injektor ke produser yang terhubung. Fitur yang membedakan

streamline simulator dengan tradisional finite-difference simulator adalah kemampuan menghitung laju alir total dan laju alir masing-masing fase pada setiap pasang injektor produser. Dengan informasi ini, dimungkinkan menentukan efisiensi pasangan injektor produser dan relokasi fluida injeksi untuk optimasi produksi tanpa harus menambah sumur baru. Demonstrasi penggunaan streamline simulator untuk optimasi pengelolaan injeksi air telah dibahas dalam beberapa paper⁽⁸⁻²⁷⁾. Kelemahan streamline simulator adalah umumnya hanya mempertimbangkan proses fisika yang sederhana, misal proses pendesakan minyak oleh air. Ekstension metode streamline untuk menggambarkan proses yang lebih kompleks seperti pendesakan panas⁽²⁹⁻³⁰⁾ dan injeksi gas tercampur⁽³²⁾ telah diinisiasi. Aplikasi streamline untuk proses EOR akan memudahkan bagi reservoir engineer dalam desain pola injeksi, penempatan sumur injektor dan alokasi laju injeksi. Demikian juga dalam evaluasi efisiensi penyapuan dan perolehan minyak dari berbagai skenario pengembangan.

V. KESIMPULAN DAN SARAN

Saat ini, kontribusi teknologi EOR terhadap produksi minyak nasional sekitar 20%. Potensi EOR Indonesia ditaksir 42,8 miliar standar barel minyak. Sekitar 58% dari angka ini terakumulasi di wilayah Sumatera Tengah dan Selatan. Sebagian besar potensi EOR di kedua wilayah ini merupakan kandidat injeksi kimia dan gas CO₂. Diperlukan studi yang lebih detail mengenai potensi EOR Indonesia agar dapat disusun strategi pengembangan ke depan.

Formula bahan kimia yang digunakan pada injeksi kimia spesifik untuk tiap reservoar. Dengan karakteristik reservoar-reservoar Indonesia yang beragam maka terbuka lebar ruang riset pengembagan kemikal EOR. Riset polimer yang murah dan aman serta tahan terhadap salinitas dan temperatur tinggi akan sangat atraktif. Polimer yang dikembangkan harus juga tahan terhadap serangan bakteri di reservoar dan tidak mempunyai kecenderungan menurunkan permeabilitas batuan. Pengembangan viscosifier CO2 berbasis polimer juga diperlukan mengingat potensi injeksi gas CO, ke depan cukup besar. Riset surfaktan EOR adalah mencari surfaktan dengan bahan dasar nabati dan dapat menghasilkan IFT kurang dari 10⁻³ dyne/ cm. Kemampuan formulasi alkalin-surfaktan-polimer untuk suatu reservoar sangat diperlukan karena dengan formula ini tidak hanya akan meningkatkan USMAN

efisiensi dan efektifitas pendesakan tapi juga dapat menekan tingginya biaya kemikal. Di sisi mikro reservoar, diperlukan studi efek perubahan wettability, saturasi fluida, dan temperatur selama proses EOR terhadap kurva permeabilitas relatif. Penggunaan metode numerik dan CT scan dapat meningkatkan akurasi permeabilitas relatif. Ekstensi teknologi streamline untuk simulasi proses EOR memudahkan evaluasi secara cepat berbagai skenario pola injeksi, penempatan sumur injektor, dan alokasi laju injeksi serta evaluasi efisiensi penyapuan minyak di dalam reservoar. Sukses inovasi teknologi tersebut di atas dapat mendorong implementasi teknologi EOR yang ekonomis.

VI. UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Tim Studi Inventarisasi Cadangan Migas "LEMIGAS" dan seluruh pihak pihak di LEMIGAS yang telah membantu dalam memberikan data, informasi, dan meluangkan waktu bertukar pikiran sehingga makalah ini dapat diselesaikan. Terima kasih dan penghargaan juga Penulis sampaikan kepada Prof. (R) Dr. Suprajitno Munadi atas saran, bimbingan, dan koreksi untuk perbaikan makalah ini.

KEPUSTAKAAN

- 1. **Ariadji, T.,** 2005, "Effect of Vibration on Rock and Fluid Properties: On Seeking the Vibroseismic Technology Mechanisms", The SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, SPE 93112.
- 2. **Betty J. F.,** 2004, "Selected U. S. Department of Energy EOR Technology Application", The 2004 SPE/DOE Fourteenth Symposium on Improved Oil Recovery, Oklahoma, USA, SPE 89452.
- Bryant, S. L. and Lockhart, T. P., 2000, "Reservoir Engineering Analysis of Microbial Enhanced Oil Recovery", The 2000 SPE Annual Technical Conference and Exhibition, Dallas, USA, SPE 63229.
- Curtis, C., Kopper, R., Decoster, E., Guzmán-Garcia, A., Huggins, C., Knauer, L., Minner, M., Kupsch, N., Linareas, L. M., Rough, H., and Waite, M., 2002, "Heavy-oil reservoirs", Oilfield Review Autumn 2002 3, Schlumberger.

- Djoko Darmono, et al., 2009, Mineral dan Energi Kekayaan Bangsa Sejarah Pertambangan dan Energi Indonesia, Departemen Energi dan Sumber Daya Mineral, Jakarta.
- 6. **Don W. Green** and **G. Paul Willhite**, 2003, Enhanced Oil Recovery, SPE Textbook Series Vol. 6, the Society of Petroleum Engineers Inc., USA.
- 7. Edward, M. L. T., et al, 2004, "Screening EOR Lapangan Minyak Cekungan Sedimen Sumatera Selatan", Laporan Penelitian PPPTMGB "LEMI-GAS" Tahun 2004, Jakarta.
- 8. **Guimaraes, M. S., Schiozer, D. J.,** and **Maschio, C.,** 2005, "Use of Streamlines and Quality Map in the Optimization of Production Strategy of Mature Oil Fields", The SPE Latin American and Caribbean Petroleum Engineering Conference, Rio de Jeneiro, Brazil, SPE 94746.
- Gunawan, S., 2008, "Indonesia IOR: Existing and Future", Bahan Presentasi pada Pelatihan di Kantor Sendiri yang Diselenggarakan di LEMI-GAS, BPMIGAS, Jakarta.
- 10. Harry L. Chang, Xingguang, S., Long, Xiao., Zhidong, G., Yuming, Y., Yuguo, X., Gang, C., Kooping, S., and James, C. Mack, 2006, "Successful Field Pilot of In-Depth Colloidal Dispersion Gel (CDG) Technology in Daqing Oil Field", SPE Reservoir Evaluation & Engineering (Desember 2006), pp. 664 - 673.
- 11. Heller, J. P., Dandge, D. K., Card, R. J., and Donaruma, L. G., 1985, "Direct Thickeners for Mobility Control of CO₂ Floods", Society of Petroleum Engineers Journal, pp. 679 686.
- 12. **Hestuti, E.** *et al*, 2010, "Pembuatan Surfaktan untuk Aplikasi Pendesakan Minyak dengan Injeksi Kimia", Laporan Penelitian PPPTMGB "LEMIGAS" Tahun 2010, Jakarta.
- 13. **Hestuti, E., Usman, Sugihardjo**, 2009, "Optimasi Rancangan Injeksi Kimia ASP untuk Implementasi Metode EOR", Simposium Nasional IATMI 2009, Bandung, IATMI 09 00X.
- 14. Hou, Z., Wu, X., Wang, Z., Han, P., Wang, Y., Xu, Y., and Jin, R., 2005, "The Mechanism and Application of MEOR by Brevibacillus Brevis and Bacilus Cereus in Daqing Oilfield", The SPE International Improved Oil Recovery Conference in Asia Pacific. Kuala Lumpur Malaysia, SPE 97469.

VOL. 45. NO. 2, AGUSTUS 2011: 91 - 102

- 15. **L.P. Dake**, 2002, Fundamentals of Reservoir Engineering, Elsevier Science B.V. Amsterdam, the Netherlands.
- Larry W. Lake, 2005, Petroleum Engineering Handbook – Chemical Flooding, Society of Petroleum Engineers, Richardson, Texas, USA.
- 17. Manrique, E. J., Muci, V. E., and Gurfinkel, M. E., 2007, "EOR Field Experiences in Carbonate Reservoirs in the United States", SPE Reservoir Evaluation & Engineering (Desember 2007), pp. 667 686.
- 18. Maure, M.A., Dietrich, F. L., Diaz, V. A., Arganaraz, H., 1999, "Microbial Enhanced Oil Recovery Pilot Test in Piedras Coloradas Field, Argentina", The 1999 SPE Latin American and Caribbean Petroleum Engineering Conference, Caracas, Venezuela, SPE 53715.
- 19. Ohno, K., Maezumi, S., Sarma, H. K., Enomoto, H., Hong, C., Zhou, S.C., Fujiwara, K., 1999, "Implementation and Performance of a Microbial Enhanced Oil Recovery Field Pilot in Fuyu Oilfield, China", The 1999 SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, SPE 54328.
- 20. Perry M. Jarrel, Charles E. Fox, Michael H. Stein, and Steven L. Webb, 2002, Practical Aspects of CO₂ Flooding, Monograph Series of the Society of Petroleum Engineers, Richardson, Texas.
- Prats, M., 1986, Thermal Recovery, Monograph Series of the Society of Petroleum Engineers, Dallas.
- 22. Saikrishna, M., Roy M. Knapp, and Michael J. Mcinemey, 2007, "Microbial Enhanced-Oil-Recovery Technologies: A Review of the Past, Present, and Future", The 2007 SPE Production and Operations Symposium, Oklahoma City, USA, SPE 106978.
- 23. Strappa, L. A., De Lucia, J.P., Maure, M. A., Lopez Liopiz, M. L., 2004, "A Novel and Successful MEOR Pilot Project in a Strong Water-Drive Reservoir Vizcacheras Field, Argentina", The 2004 SPE/DOE Fourteenth Symposium on Improved Oil Recovery, Oklahoma, USA, SPE 89456.
- 24. **Sugihardjo**, **2009**, "Capillary Desaturation Curves for Evaluating Surfactant Performance

- by Core Flooding Experiments", LEMIGAS Scientific Contributions, Volume 32 (1), pp. 16 20, Jakarta.
- 25. **Sylte, A., Ebeltoft, E.,** and **Petersen, E. B.,** 2004, "Simultaneous Determination of Relative Permeability and Capillary Pressure Using Data from Several Experiments", The International Symposium og the Society of Core Analysis, Abu Dhabi, UAE, SCA2004-17.
- 26. Sylte, A., Mannseth, T, Mykkeltveit, J., and Nordtvedt, J. E., 1998, "Relative Permeability and Capillary Pressure: Effects of Rock Heterogeneity", The International Symposium og the Society of Core Analysis, SCA-9808.
- 27. Thiele, M. R. and Batycky, R. P., 2006, "Using Streamline-Derived Injection Eddiciencies for Improved Waterflood Management", April 2006 SPE Reservoir Evaluation & Engineering, pp. 187 196.
- 28. **Trimulyo, S. W.** *et al.*, 2010. "Inventarisasi dan Analisis Data Cadangan Migas Indonesia, 01 Januari 2010", Laporan Penelitian PPPTMGB "LEMIGAS" Tahun 2010, Jakarta.
- 29. **Usman,** 2010, "Pengembangan Simulator Reservoar untuk Evaluasi Perolehan Minyak dengan Teknologi EOR", Lembar Publikasi LEMIGAS, Volume 44 (2), pp. 95 107, Jakarta.
- 30. **Usman** and **Arihara, N.,** 2006, "A Sequential Thermal Simulator with Streamline for Heavy Oil Recovery Simulation", The proceedings at the 1st Heavy Oil Conference, Beijing, China, 2006-404.
- 31. Willman, B.T., Valleroy, V.V., Runberg, G.W., Cornelius, A.J., and Powers, L.W., 1961, "Laboratory Studies of Oil Recovery by Steam Injection", Journal of Petroleum Technology (July 1961), pp. 681-690.
- 32. Yan, W., Michael, L. M., Erling, H. S., Roman, A. B., and Alexander A. S., 2004, "Three-phase Compositional Streamline Simulation and Its Application to WAG", The 2004 SPE/DOE Fourteenth Symposium on Improved Oil Recovery, Oklahoma, USA, SPE 89440.
- 33. **Zhijan, Q., Zhang, Y., Zhang, X., Dai, J.,** 1998, "A successful ASP Flooding Pilot in Gudong Oil Field", The 1998 SPE/DOE Improved Oil Recovery Symposium, Oklahoma, USA, SPE 39613.