

Lembaran Publikasi Minyak dan Gas Bumi, Vol. 59 No. 2, Agustus 2025: 1 - 10

BALAI BESAR PENGUJIAN MINYAK DAN GAS BUMI

LEMIGAS

Journal Homepage: http://www.journal.lemigas.esdm.go.id ISSN: 2089-3396 e-ISSN: 2598-0300 DOI org/10.29017/LPMGB.59.2.1810

Potensi Mineral Silika Pulau Rupat sebagai *Proppant* Alami Berdasarkan Kriteria API 19C

Novrianti¹, Rezi Indra¹, Dike Fitriansyah Putra¹, dan M. Ridha Fikri^{1,2}

¹Jurusan Teknik Perminyakan, Fakultas Teknik, Universitas Islam Riau. Jalan Kaharuddin Nst No 113 Pekanbaru, Riau, 28284, Indonesia.

²Jurusan Teknik Perminyakan, Fakultas Teknik Pertambangan dan Perminyakan, Institut Teknologi Bandung.

Jl. Ganesha No.10, Lb, Siliwangi, Kecamatan Coblong, Kota Bandung, Jawa Barat, 40132, Indonesia.

ABSTRAK

Artikel Info:

Naskah Diterima: 09 Juni 2025 Diterima setelah perbaikan: 27 Juni 2025 Disetujui terbit: 02 Juli 2025

Kata Kunci:

proppant silica rupat API 19c epoxy Penelitian ini mengevaluasi kelayakan mineral silika dari Pulau Rupat, Riau, sebagai kandidat proppan alami untuk aplikasi rekahan hidrolik berdasarkan spesifikasi API RP19C. Pengujian melibatkan tiga sampel, yaitu mineral silika Pulau Rupat tanpa modifikasi, mineral silika Pulau Rupat resin berlapis 5 %, dan mineral silika Pulau Rupat coated resin 10 %. Karakteristik utama yang diuji meliputi roundness dan sphericity, bulk density, turbidity, acid solubility, dan crush resistance. Hasil penelitian menunjukkan bahwa roundness dan sphericity meningkat secara signifikan dengan coated resin, di mana sampel coated 10 % mencapai nilai 0,7 dan memenuhi batas minimum API (>0,6). Semua sampel memiliki nilai bulk density di atas standar minimum API (>1,5 gr/cc), yakni masing-masing 1,53 gr/cc, 1,58 gr/cc, dan 1,60 gr/cc. Nilai turbidity semua sampel juga tergolong rendah, berada pada rentang 20-38 NTU, jauh di bawah batas maksimum 250 NTU. Acid solubility menurun seiring peningkatan fraksi resin, dari 2,8% (tanpa coating) menjadi 2 % dan 1,2 %, memenuhi ambang batas <3 % sesuai API. Pada uji ketahanan terhadap benturan seluruh sampel menunjukkan tingkat kerusakan yang dapat diterima, yaitu 6,7 % pada 2000 psi untuk mineral silika Pulau Rupat, serta 9 % dan 8 % pada 6000 psi untuk resin coated mineral silia Pulau Rupat, dengan batas maksimum <10 %.

ABSTRACT

This study evaluates the suitability of silica sand from Rupat Island, Indonesia, as a natural proppant candidate for hydraulic fracturing applications, based on API RP19C specifications. The investigation involved three samples: unmodified silica sand, 5 % resin-coated sand, and 10 % resin-coated sand. Key properties assessed include roundness and sphericity, bulk density, turbidity, acid solubility, and crush resistance. The results show a significant improvement in roundness and sphericity with resin coating, with the 10 % coated sample reaching a value of 0.7—meeting the API minimum requirement of >0.6. All samples exhibited bulk density values exceeding the API minimum of 1.5 g/cc, specifically 1.53 g/cc, 1.58 g/cc, and 1.60 g/cc, respectively. Turbidity values were also low, ranging from 20 to 38 NTU, well below the API limit of 250 NTU. Acid solubility decreased with increasing resin fraction, from 2.8 % (uncoated) to 2 % and 1.2 %, all within the acceptable API limit of <3 %. In the crush resistance test using 40/70 mesh, all samples demonstrated acceptable levels of particle degradation: 6.7% at 2000 psi for uncoated sand, and 9 % and 8 % at 6000 psi for resin-coated samples—each remaining below the API maximum of 10 %.

© LPMGB - 2025

PENDAHULUAN

Hydraulic fracturing merupakan teknik stimulasi sumur yang digunakan untuk memecah formasi dengan permeabilitas rendah, sehingga meningkatkan permeabilitas dan produktivitas reservoir hidrokarbon (Economides & Nolte 1989). Hydraulic fracturing memainkan peran penting dalam meningkatkan laju alir minyak dan gas dengan menciptakan rekahan yang berfungsi sebagai jalur alir pada formasi dengan permeabilitas rendah (B. Chen dkk., 2022). Penggunaan teknik ini telah memberikan dampak positif yang signifikan terhadap industri perminyakan selama dua dekade terakhir, dan berkontribusi pada keberhasilan eksploitasi sumber daya minyak dan gas (Sahai & Moghanloo 2019).

Dalam pelaksanaannya, hydraulic fracturing membutuhkan penggunaan proppant, yaitu material yang berfungsi untuk menjaga agar rekahan yang terbentuk tetap terbuka dan juga menjadi jalur aliran fluida dari formasi (Effendi & Firdaus 2023). Material yang umum digunakan sebagai proppant antara lain cangkang kenari, pasir alam, glass beads, resin-coated sand, sintered bauxite, kaolin, dan fused zirconia. Pasir yang digunakan sebagai proppant biasanya adalah pasir kuarsa dengan kandungan silika tinggi (Liang et al., 2016).

Mineral silika (quartz sand) merupakan salah satu material proppant yang paling umum digunakan dalam operasi hydraulic fracturing karena harganya yang relatif murah, ketersediaannya yang melimpah, berat jenis yang rendah, serta mudah diperoleh dari alam. Selain itu, pasir dapat dimodifikasi dengan pelapisan atau coating berbagai material seperti resin atau epoxy untuk meningkatkan sifat mekanik dan termal sehingga mampu bertahan dalam kondisi bawah permukaan dan menjaga integritas rekahan. Untuk memperoleh proppant dengan densitas rendah dan kekuatan tinggi (crush resistance), proppant alami dimodifikasi dengan pelapis seperti resin atau serat sintetis. Resin-coated proppants umumnya memiliki densitas antara 1,25–2,61 g/cm³ dan mampu bertahan pada tekanan tutup hingga 10.000-15.000 psi (Zoveidavianpoor & Gharibi 2015).

Pemilihan dan evaluasi performa proppant merupakan aspek penting dalam operasi hydraulic fracturing, karena sangat menentukan efektivitas produksi (Fadl & Abdou 2019). Karakterisasi proppant mengacu pada standar API RP 19C (API 2018), yang mencakup parameter roundness dan sphericity, acid solubility, bulk density, turbidity, serta crush resistance.

Roundness mengacu pada kehalusan permukaan butiran proppant yang menunjukkan ketiadaan sudut tajam, sedangkan sphericity menggambarkan sejauh mana bentuk partikel menyerupai bola sempurna. Kedua parameter ini sangat berpengaruh terhadap kekuatan mekanik dan performa proppant saat berada dalam kondisi tekanan tinggi. Menurut API RP 19C, parameter ini dievaluasi dengan menggunakan faktor bentuk Krumbein, dengan nilai minimum yang disarankan sebesar 0,6–0,7.

Dalam penelitian proppant pada reservoir Mahu tight conglomerate, diketahui bahwa ukuran proppant sangat mempengaruhi bentuk *proppant* dan rasio massa. *Proppant* berukuran 40/70 mesh memiliki retensi yang lebih tinggi dibandingkan 20/40 mesh, dengan rasio massa masing-masing berkisar antara 10 %–450 % dan 5 %–280 % (Wang dkk., 2024). Bulk density didefinisikan sebagai rasio massa proppant kering terhadap volume totalnya, biasanya dinyatakan dalam satuan g/cm³. *Acid solubility* mencerminkan stabilitas kimia dari proppant terhadap lingkungan asam dan menggambarkan ketahanannya terhadap larutan asam (API 2018).

Turbidity mengindikasikan tingkat kekeruhan sampel proppant, yang disebabkan oleh keberadaan kontaminan halus seperti clay, silt, atau partikel lain. Tingginya nilai turbidity menunjukkan potensi penyumbatan pori yang dapat mengurangi efektivitas fraktur. Crush resistance menjadi parameter kunci dalam penilaian proppant karena menunjukkan batas tekanan maksimum yang dapat ditahan sebelum terjadi kerusakan struktural. Proppant dengan kekuatan mekanik tinggi cenderung menghasilkan partikel halus yang lebih sedikit. Kandungan fines yang tinggi dapat menghambat performa sumur karena menyumbat jalur alir dan menurunkan permeabilitas serta produktivitas. Studi oleh Tang et al. (2018) menunjukkan bahwa konsentrasi fines sebesar 5 % saja dapat menurunkan konduktivitas proppant lebih dari 50 %.

Berbagai penelitian sebelumnya telah mengevaluasi kelayakan penggunaan pasir kuarsa dari berbagai daerah sebagai material proppant untuk hydraulic fracturing. Studi oleh Lam et al. menunjukkan bahwa kombinasi proppant jenis Ottawa dan Mississippi dengan masing-masing massa 300 gram dapat bertahan hingga tekanan 4000 psi dengan persentase fines sebesar 5,8 %, masih di bawah batas maksimum API RP 19C. Penelitian oleh T. Chen et al. (2022) mengkaji performa pasir alam berlapis *epoxy resi*n, dan menunjukkan peningkatan

signifikan pada karakteristik mekanik dan kimia. Nilai crush resistance menurun dari 36 % menjadi 4 %, acid solubility turun hingga 0,5 %, dan nilai turbidity turun dari 95 NTU menjadi 30 NTU, menandakan penurunan kandungan impuritas halus secara signifikan.

Dalam operasi hydraulic fracturing, integritas mekanik dan stabilitas termal dari proppant sangat penting untuk menjaga konduktivitas fraktur atau rekahan di bawah closure pressure. Meskipun mineral silika alam tersedia secara melimpah, kekuatan dan sphericity-nya seringkali belum memadai untuk kondisi bawah permukaan bertekanan tinggi. Modifikasi permukaan menggunakan polymeric resins telah menjadi solusi menjanjikan. Epoxy resin diketahui memiliki kekuatan mekanik, ketahanan kimia, dan stabilitas termal tinggi (Zoveidavianpoor & Gharibi 2015). Polyester resin juga digunakan untuk meningkatkan crush resistance dan mengurangi fines (T. Chen et al., 2022). Proppant dengan coating resin memiliki struktur yang lebih padat dan kapasitas dukung beban yang lebih baik, yang mendukung performa di reservoir non-konvensional.

Indonesia sendiri memiliki beberapa daerah yang kaya akan sumber daya mineral silika yang berpotensi sebagai proppant alami, seperti Tuban (Jawa Timur) dan Pulau Rupat (Bengkalis, Riau). Pulau Rupat terletak di bagian utara Cekungan Sumatra Tengah dan langsung menghadap Selat Malaka. Distribusi mineral silika di wilayah ini diyakini dipengaruhi oleh proses sedimentasi dari arus laut yang membawa material silika dari wilayah sekitarnya. Secara geologi, pulau ini didominasi oleh endapan Kuarter (Older dan Recent Surface Sediments). Pengambilan sampel dilakukan di lima titik lokasi: Beting Aceh, Tanjung Api, Teluk Rhu, Tanjung Punai, dan Tanjung Lapin.

Untuk mengevaluasi potensi penggunaan mineral silika dari Pulau Rupat sebagai proppant, dilakukan studi komprehensif yang bertujuan untuk mengevaluasi parameter *roundness*, *sphericity*, *bulk density*, *acid solubility*, *turbidity*, dan *crush resistance* dari mineral silika pulau Rupat serta pengaruh pelapisan *epoxy resin* terhadap parameter-parameter tersebut berdasarkan spesifikasi API RP 19C.

BAHAN DAN METODE

Penelitian ini diawali dengan pengambilan sampel pasir kuarsa dari Pulau Rupat, khususnya di wilayah Teluk Rhu (TRh). Pengujian terhadap sampel ini dilakukan sebagai studi pendahuluan untuk mengevaluasi potensi pasir kuarsa Pulau Rupat sebagai kandidat proppant berdasarkan standar API RP 19C. Sebelum dilakukan pengujian terhadap parameter roundness dan sphericity, acid solubility, bulk density, turbidity, dan crush resistance, terlebih dahulu dilakukan analisis ukuran butiran (grain size analysis). Sampel pasir kuarsa seberat 100 gram disiapkan dan diayak menggunakan saringan 40/70 mesh untuk memperoleh distribusi ukuran partikel yang sesuai.

Setelah proses penyaringan, sampel pasir kuarsa tersebut kemudian diuji melalui serangkaian pengujian yang mencakup *roundness* dan *sphericity*, acid solubility, bulk density, turbidity, serta crush resistance. Bahan-bahan yang digunakan dalam prosedur eksperimental ini meliputi pasir kuarsa dari Pulau Rupat, epoxy resin, air suling (aquadest), dan hydrochloric acid (HCl). Peralatan yang digunakan antara lain gelas beaker, gelas ukur, timbangan digital, oven, batang pengaduk, mikroskop, hydraulic press, dan alat pengukur turbidity (turbidity meter). Penelitian ini terdiri dari tiga jenis sampel uji sebagaimana yang terdapat pada Tabel 2.

Tabel 1. Sampel penelitian

Sampel	Parameter
Sampel 1	Pasir Kuarsa murni Pulau Rupat
Sampel 2	Pasir Kuarsa murni Pulau Rupat ditambah 5 ml <i>epoxy</i> resin
Sampel 3	Pasir Kuarsa murni Pulau Rupat ditambah 10 ml <i>epoxy</i> resin

HASIL DAN DISKUSI

Tabel 2 menunjukkan hasil pengujian roundness dan sphericity, acid solubility, bulk density, turbidity, serta crush resistance untuk sampel mineral silika murni Pulau Rupat, sampel mineral silika murni Pulau Rupat dengan tambahan epoxy resin 5 % dan sampel mineral silika murni Pulau Rupat dengan tambahan epoxy resin 10 %. Sedangkan table 3 merupakan nilai parameter roundness, sphericity, bulk density, acid solubility, turbidity, dan crush resistance yang telah ditetapkan oleh API 19C.

Tabel 2. Hasil Uji penelitian

Parameter	Standar API RP19C	Pasir Silika Rupat	Sand Coated Resin 5%	Sand Coated Resin 10%
Roundness Sphericity	0,6	0,6	0,65	0,7
Bulk Density	>1,5 gr/cc	1,538 gr/cc	1,58 gr/cc	1,6 gr/cc
Turbidity	<250 NTU	38 NTU	20 NTU	38 NTU
Acid Solubility	<7 %	2,8 %	2 %	1,2 %
Crush Resistance	<10 %	6,7 % (2000 psi) 9 % (3000 psi) 10 % (4000 psi)	9 % (6000 psi) 12 % (7000 psi) 15 % (8000 psi)	8 % (6000 psi) 11 % (7000 psi) 13 % (8000 psi)

Tabel 3. Spesifikasi Standar API RP 19C

Parameter	Batas Standar API RP 19C	
Roundness & Sphericity	≥0,6	
Bulk Density	$>1,5 \text{ g/cm}^3$	
Turbidity	<250 NTU	
Acid Solubility	<3 %	
Crush Resistance	≤10 % <i>fines</i> pada tekanan tertentu	

Roundness dan sphericity

Roundness dan sphericity merupakan dua parameter utama dalam karakterisasi proppant berdasarkan standar API RP 19C. Roundness menggambarkan tingkat kelengkungan partikel dan ketidakhadiran sudut tajam, sedangkan sphericity menunjukkan sejauh mana bentuk butiran menyerupai bola sempurna. Kedua parameter ini sangat mempengaruhi kekuatan mekanik dan kestabilan proppant saat menerima tekanan tinggi di dalam fraktur.

Berdasarkan hasil uji laboratorium, nilai *roundness* dan *sphericity* dari mineral silika murni Pulau Rupat adalah 0,6. Nilai ini memenuhi ambang minimum yang ditetapkan oleh API RP 19C, namun berada tepat pada batas bawah. Setelah dilakukan pelapisan permukaan menggunakan *epoxy resin*, nilai roundness dan sphericity meningkat menjadi 0,65 untuk sampel dengan 5 % resin, dan 0,7 untuk sampel

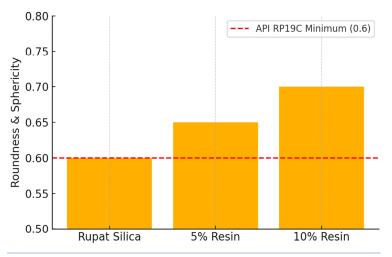
dengan 10 % resin. Peningkatan ini menunjukkan bahwa pelapisan resin memberikan efek positif terhadap morfologi partikel, membuatnya lebih bulat dan halus. Butiran proppant yang memiliki *roundness* dan *sphericity* tinggi akan menghasilkan pack yang lebih seragam dan stabil di dalam rekahan batuan. Distribusi tekanan antar partikel menjadi lebih merata, mengurangi risiko konsentrasi tegangan yang dapat menyebabkan kerusakan mekanik atau penghancuran partikel. Selain itu, partikel yang lebih sferis akan memiliki friksi yang lebih rendah, sehingga lebih mudah berpindah ke dalam rekahan dan membentuk jaringan konduktif yang optimal untuk aliran hidrokarbon.

Peningkatan nilai roundness dan sphericity akibat pelapisan resin ini juga didukung oleh literatur. Zoveidavianpoor & Gharibi (2015) menyatakan bahwa resin-coated proppants cenderung memiliki morfologi yang lebih baik dan resistensi yang lebih tinggi terhadap penghancuran partikel. Demikian pula, T. Chen et al. (2022) menemukan bahwa modifikasi pasir silika dengan polyester resin meningkatkan karakteristik fisik, termasuk sphericity, dan mengurangi kemungkinan terbentuknya fines. Penelitian oleh (Novrianti et al., 2025) mengenai karakterisasi pasir kuarsa dari Tibawan, Rokan Hulu, juga menunjukkan bahwa modifikasi permukaan dengan pelapisan epoxy resin mampu meningkatkan sifat fisik dan mekanik proppant, di mana sampel berlapis resin 12 gram memenuhi seluruh spesifikasi API 19C. Hasil ini menegaskan bahwa pelapisan resin merupakan metode efektif untuk meningkatkan kualitas proppant alam agar sesuai dengan standar industri.

Dilihat dari hasil pengujian ini, menunjukkan bahwa mineral silika Pulau Rupat memiliki potensi sebagai proppant alami, dan dapat dioptimalkan lebih lanjut melalui modifikasi permukaan menggunakan resin. Khususnya, peningkatan roundness dan sphericity dari 0,6 ke 0,7 menandakan bahwa kualitas bentuk partikel dapat ditingkatkan secara signifikan melalui metode pelapisan sederhana, sehingga memperluas kemungkinan aplikasi pada reservoir unconventional. Perbandingan nilai roundness-sphericity antara sampel mineral silika murni pulau Rupat dengan tambahan 5 % dan 10 % epoxy resin terdapat pada Gambar 1.

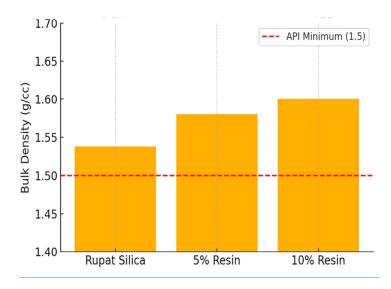
Bulk density

Bulk density merupakan salah satu parameter fundamental dalam proses evaluasi kelayakan material proppant yang digunakan pada operasi hydraulic fracturing, karena berkaitan erat dengan kapasitas pengisian ruang rekahan (fracture) serta dukungan terhadap konduktivitas fluida produksi. Menurut spesifikasi dari API RP 19C, proppant yang ideal harus memiliki nilai bulk density lebih dari 1,5 g/cc untuk memastikan bahwa material tersebut mampu memberikan distribusi tekanan yang stabil dan efisien selama proses rekahan berlangsung.


Berdasarkan hasil pengujian laboratorium, diketahui bahwa pasir silika alami dari Pulau Rupat memiliki bulk density sebesar 1,538 g/cc, yang berarti telah melampaui batas minimum yang direkomendasikan oleh API. Setelah dilakukan modifikasi permukaan menggunakan epoxy resin,

nilai bulk density meningkat secara signifikan menjadi 1,58 g/cc untuk sampel yang dilapisi 5 % resin, dan 1,6 g/cc untuk sampel dengan 10 % resin. Peningkatan ini menunjukkan bahwa teknik pelapisan resin tidak hanya berfungsi untuk memperbaiki bentuk morfologi partikel, seperti roundness dan sphericity, tetapi juga efektif dalam meningkatkan massa jenis yang berimplikasi langsung terhadap performa fisik dan mekanik dari proppant (T. Chen et al., 2022).

Nilai bulk density yang lebih tinggi memberikan keuntungan dalam operasi lapangan, karena proppant dengan densitas yang baik akan menghasilkan pack yang lebih padat, seragam, dan tahan terhadap tekanan tinggi di dalam rekahan. Kepadatan ini memungkinkan terbentuknya jalur alir yang stabil bagi hidrokarbon, serta mengurangi kemungkinan penyusutan atau pergeseran partikel selama tahap produksi. Studi oleh Zoveidavianpoor & Gharibi (2015) menyebutkan bahwa proppant dengan densitas optimal menunjukkan performa yang lebih tahan terhadap tekanan siklik dan mampu menjaga konduktivitas rekahan dalam jangka waktu yang lebih panjang.


Dengan demikian, hasil analisis ini menunjukkan bahwa pasir silika dari Pulau Rupat, terlebih setelah melalui proses pelapisan resin, memiliki potensi yang sangat baik untuk dikembangkan sebagai proppant lokal. Keunggulan nilai bulk density-nya telah memenuhi, bahkan melampaui standar API, dan selaras dengan kebutuhan operasi stimulasi sumur di lapangan, terutama untuk kondisi reservoir dengan tekanan menengah hingga tinggi.

Roundness and sphericity of Proppant Samples

Gambar 1. Perbandingan nilai *roundness* dan *sphericity* pelapisan resin pada pasir kuarsa Pulau Rupat secara signifikan meningkatkan nilai *roundness* dan *sphericity*, di mana sampel dengan 10% resin melampaui batas minimum standar API RP 19C (0,6).

Bulk Density of Proppant Samples

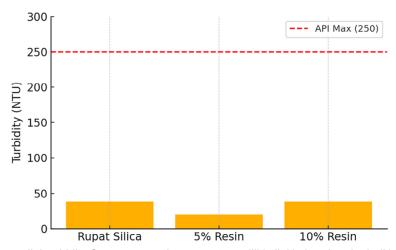
Gambar 2. Pelapisan resin pada pasir kuarsa Pulau Rupat meningkatkan nilai *bulk density*, di mana sampel dengan 5% dan 10% resin berhasil melampaui batas minimum API (1,5 g/cc).

Turbidity

Turbidity merupakan salah satu parameter penting yang mencerminkan kejernihan visual dan kualitas kebersihan dari material proppant. Parameter ini digunakan untuk mendeteksi keberadaan partikelpartikel halus seperti clay, silt, atau serpihan mineral yang dapat menyebabkan penyumbatan pada jalur aliran fluida di dalam formasi. Dalam praktik lapangan, nilai turbidity yang tinggi dapat menyebabkan penurunan efisiensi fraktur dan menurunkan permeabilitas rekahan akibat terjadinya plugging oleh partikel mikroskopik. Hasil pengujian turbidity terdapat pada gambar 3

Mengacu pada standar API RP 19C, nilai maksimum yang diperbolehkan untuk turbidity adalah 250 NTU (Nephelometric Turbidity Units). Hasil uji laboratorium dalam studi ini menunjukkan bahwa ketiga jenis sampel yaitu pasir silika murni dari Pulau Rupat, resin-coated 5 %, dan resincoated 10 % memiliki nilai turbidity masing-masing sebesar 38 NTU, 20 NTU, dan 38 NTU. Seluruh nilai ini berada jauh di bawah batas maksimum yang ditetapkan oleh API, mengindikasikan bahwa ketiga sampel memiliki tingkat kemurnian yang sangat baik dan layak digunakan sebagai proppant dalam hydraulic fracturing.

Menariknya, pelapisan epoxy resin sebesar 5 % pada sampel terbukti mampu menurunkan turbidity menjadi 20 NTU. Fenomena ini menunjukkan bahwa selain meningkatkan kekuatan mekanik dan morfologi partikel, modifikasi resin juga berperan


dalam menurunkan kandungan fines yang melekat pada permukaan partikel *proppant*. Hal ini selaras dengan hasil penelitian oleh Ramazanov et al. (2025) yang menunjukkan bahwa coating berbasis resin dapat memperbaiki karakteristik kebersihan dan homogenitas *proppant* secara signifikan.

Turbidity yang rendah sangat diharapkan dalam operasi hydraulic fracturing karena proppant yang lebih bersih akan lebih stabil dalam rekahan dan tidak mudah menyebabkan clogging pada micro-fractures. Hal ini mendukung terbentuknya fraktur konduktif yang dapat mempertahankan aliran fluida produksi dari reservoir secara optimal. Hal ini menunjukkan bahwa baik pasir silika Pulau Rupat dalam bentuk asli maupun setelah dimodifikasi memiliki potensi tinggi sebagai proppant lokal yang memenuhi standar industri migas.

Acid solubility

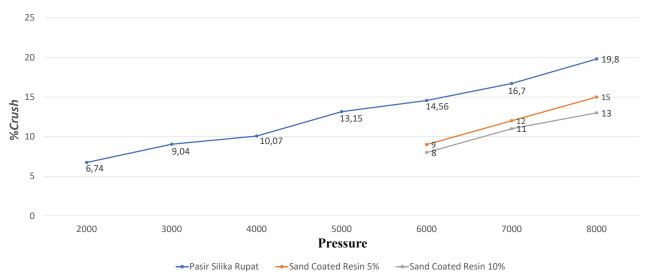
Acid solubility merupakan salah satu indikator penting yang menggambarkan ketahanan kimia proppant terhadap larutan asam yang digunakan selama proses hydraulic fracturing, khususnya dalam kondisi formasi karbonat atau ketika menggunakan fluida berbasis HCl dan HF. Menurut spesifikasi API RP 19C, batas maksimum yang dapat diterima untuk acid solubility adalah sebesar 3 %. Nilai ini ditetapkan untuk memastikan bahwa material proppant tidak mudah larut atau terdegradasi ketika terpapar lingkungan asam yang agresif selama operasi stimulasi sumur (API 2018).

Bulk Density of Proppant Samples

Gambar 3. Perbandingan nilai turbidity Semua sampel *proppant* memiliki nilai kekeruhan jauh di bawah batas maksimum API sebesar 250 NTU.

Hasil pengujian laboratorium menunjukkan bahwa mineral silika murni dari Pulau Rupat memiliki acid solubility sebesar 2,8 %, sementara sampel yang telah dilapisi dengan epoxy resin 5 % menunjukkan penurunan hingga 2 %, dan sampel dengan resin 10 % mengalami penurunan signifikan hingga hanya 1,2 %. Penurunan ini membuktikan bahwa modifikasi permukaan menggunakan resin tidak hanya memperbaiki sifat mekanik dan bentuk partikel, tetapi juga secara nyata meningkatkan ketahanan kimia terhadap serangan asam. Hal ini selaras dengan temuan T. Chen et al. (2022) yang menunjukkan bahwa resin coating mampu membentuk lapisan pelindung terhadap larutan HCl/ HF, menurunkan nilai pelarutan hingga lebih dari 50 % dibandingkan pasir tanpa pelapis.

Rendahnya acid solubility pada proppant sangat krusial, karena degradasi kimia dapat membebaskan partikel halus (fines) yang kemudian menyumbat pori-pori rekahan dan menurunkan efisiensi aliran hidrokarbon. Studi oleh Gidley et al. (1995) menunjukkan bahwa mobilisasi fines bahkan dalam volume kecil dapat menyebabkan penurunan konduktivitas fraktur secara signifikan saat laju alir borealis meningkat.


Selain itu, kerusakan mekanis juga berpotensi menghasilkan fragmen halus baru, yang selanjutnya memperburuk kondisi plugging (Yu et al., 2022). Penelitian tersebut menyoroti bahwa meskipun nilai acid solubility rendah menunjukkan bahwa *proppant* bertahan dari pelarutan kimia, *proppant* juga harus tahan terhadap tekanan cyclic dan mekanik untuk meminimalkan fines akibat penghancuran. Dalam hal

ini, nilai acid solubility yang rendah (<1,2 % setelah coating) meningkatkan peluang proppant tetap utuh dan bebas dari degradasi kimia, sehingga mengurangi sumber pembentukan fines. Studi laboratorium juga mendukung bahwa meskipun ekstraksi kimia bukan satu-satunya penyebab, penurunan kesetimbangan kimia berkontribusi pada stabilitas keseluruhan butiran.

Berdasarkan temuan ini, menunjukkan bahwa pelapisan epoxy resin pada pasir silika dari Pulau Rupat berperan signifikan dalam meningkatkan ketahanan terhadap larutan asam. Hal ini menjadikan material tersebut sebagai kandidat *proppant* lokal yang kompetitif dan sesuai untuk diterapkan pada reservoir dengan tingkat keasaman tinggi atau lingkungan yang memerlukan stabilitas kimia tinggi dalam jangka panjang.

Crush resistance

Gambar 5 menunjukkan hubungan antara tekanan dan persentase patahan (% *Crush*) untuk tiga jenis proppant: Pasir silika Rupat: %Crush meningkat tajam dari 6,74 % pada 2000 psi menjadi 19,8 % pada 8000 psi, menandakan ketahanan mekanik yang terbatas. *Sand Coated Resin* 5 % & 10 %: Kedua pelapis resin menurunkan fragmen pada tekanan tinggi. Pada 8000 psi, %Crush untuk resin 10 % hanya sekitar 13 %, dan resin 5 % sekitar 15 %, menunjukkan peningkatan keawetan partikel. Temuan ini sejalan dengan penelitian (Setyo Rahayu et al. 2025) yang melakukan *screening* pasir alam dari tiga lokasi, di mana sampel pasir lokasi 1 dengan mesh 40/70 dinilai paling layak sebagai proppant dengan nilai crush resistance 2–9 %, turbidity 172

Gambar 5. Perbandingan nilai *crush resistence* grafik menunjukkan tren kenaikan yang konsisten pada ketiga data, dengan garis biru

NTU, dan *bulk density* 1,497 g/cm³. Hasil tersebut menegaskan pentingnya evaluasi komprehensif terhadap sifat fisik dan kimia pasir alam sebelum ditetapkan sebagai *proppant*.

Menurut tinjauan terkini, resin coating pada proppant membantu menahan fragmentasi dan mencegah kerusakan partikel berlebih, serta mengurangi flow back proppant (Ngwe et al., 2019; Ramazanov et al., 2025). Ini sejalan dengan pengamatan eksperimen nilai %Crush lebih rendah pada sampel berlapis resin. Pelapis resin, khususnya poliimida atau epoxy, diketahui meningkatkan ketahanan kompresi berkat sifat ikatan termosetnya. Hasil studi Wei et al. (2023) menunjukkan bahwa proppant resin polyimida 6 % di tekanan ~55 MPa (≈8000 psi) memiliki breakage ratio hanya ~3,22 %, menggambarkan performa yang unggul dibandingkan standar resin lama. Penutup resin tidak hanya meningkatkan kekuatan, tetapi juga meningkatkan kemampuan menahan siklus tekanan tinggi dan mencegah pembentukan fragmen halus fines yang dapat menyumbat rekahan (Wang et al., 2024).

Pelapisan resin sangat potensial untuk pasir lokal (Rupat), karena dapat memperpanjang umur proppant dan menjaga konduktivitas fraktur, sesuai kebutuhan saat tekanan operational tinggi. Optimalisasi konsentrasi resin (sekitar 5–10 %) dan jenis resin (poliimida atau epoxy) perlu dilakukan agar mencapai keseimbangan antara berat jenis dan ketahanan hancur. Hasil ini sejalan dengan studi oleh Rahayu et al. (2024), yang mengevaluasi beberapa sampel pasir alam dari tiga lokasi berbeda, dan menemukan bahwa pasir dengan ukuran mesh 40/70

dari lokasi 1 menunjukkan nilai crush resistance terbaik (2–9 %), *bulk density* ideal sebesar 1,497 g/cm³, serta *turbidity* rendah sebesar 172 NTU, menjadikannya kandidat kuat sebagai *proppant* untuk *hydraulic fracturing*.

KESIMPULAN DAN SARAN

Penelitian ini membuktikan bahwa mineral silika Pulau Rupat memiliki potensi sebagai proppant alami untuk aplikasi hydraulic fracturing berdasarkan kriteria API RP 19C. Hasil pengujian menunjukkan bahwa nilai roundness-sphericity pasir silika murni mencapai 0,6, dan meningkat menjadi 0,65 serta 0,7 setelah dilapisi resin 5 % dan 10 %, memenuhi batas minimum API (>0,6). Nilai bulk density seluruh sampel berada di atas standar minimum 1,5 g/cc, yaitu 1,53 g/cc, 1,58 g/cc, dan 1,60 g/cc. Turbidity semua sampel relatif rendah (20–38 NTU), jauh di bawah batas maksimum 250 NTU. Uji acid solubility menunjukkan perbaikan signifikan seiring penambahan resin, dari 2,8 % (tanpa resin) menjadi 2 % dan 1,2 %, seluruhnya di bawah ambang batas <3 %. Pada uji crush resistance, sampel silika murni menunjukkan nilai 6,7 % fines pada 2000 psi, sedangkan sampel dengan resin 5 % dan 10 % masing-masing 9 % dan 8 % pada 6000 psi, semuanya berada dalam batas <10 % sesuai standar API. Dengan demikian, pasir silika Pulau Rupat, khususnya setelah dimodifikasi dengan resin, layak dikembangkan sebagai kandidat proppant lokal yang kompetitif untuk mendukung operasi stimulasi sumur di Indonesia.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Laboratorium Program Studi Teknik Perminyakan, Universitas Islam Riau atas kontribusi semua pihak dalam penelitian dan publikasi tulisan ilmiah ini.

DAFTAR ISTILAH/SINGKATAN

Simbol	Defenisi	Unit
	American	
API	Petroleum	
	Institute	
	American	
	Petroleum	
API RP 19C	Institute –	
	Recommended	
	Practice 19C	
пог	Hydrogen	
HCL	Clorida	
HE	Hydrogen	
HF	Fluorida	
	Nephelometric	
NTU	Turbidity Units	

KEPUSTAKAAN

- API, 2018, Measurement of and Specifications for Proppant Used in Hydarulic Fracturing and Gravel-packing Operations (2nd ed.).
- Chen, B., Barboza, B.R., Sun, Y., Bai, J., Thomas, H. R., Dutko, M., Cottrel, M., & Li, C., 2022, A Review of Hydraulic Fracturing Simulation. In Archives of Computational Methods in Engineering (Vol. 29). Springer Netherlands. https://doi.org/10.1007/s11831-021-09653-z.
- Chen, T., Gao, J., Zhao, Y., Liang, T., Hu, G., & Han, X., 2022, *Progress of Polymer Application in Coated Proppant and Ultra-Low Density Proppant. Polymers*, 14(24). https://doi.org/10.3390/polym14245534.
- Economides, M. J., & Nolte, K.G., 1989, Reservoir

- Stimulation (2nd ed.). Schlumberger Educational
- Effendi, D., & Firdaus, A.N., 2023, Penggunaan Pasir Proppant Sebagai Media Hydraulic Fracturing Menggunakan Standar Api Rp 19C. Journal of Applied Science, 4(2), 1–11.
- Fadl, A., & Abdou, M., 2019, Proppants Categories for Hydraulic Fracturing Process of Petroleum Wells: A Review. Global Journal of Engineering Sciences, 2(2), 1–2. https://doi.org/10.33552/ gjes.2019.02.000532.
- Gidley, J. L., Penny, G. S., & McDaniel, R.R., 1995, Effect of proppant failure and fines migration on conductivity of propped fractures. SPE Production & Facilities, 10(1), 20–25. https://doi.org/10.2118/24008-pa.
- Liang, F., Sayed, M., Al-Muntasheri, G.A., Chang, F.F., & Li, L., 2016, *A comprehensive review on proppant technologies. Petroleum*, 2(1), 26–39. https://doi.org/10.1016/j.petlm.2015.11.001.
- Ngwe, T., Swe, M.M., & Than, M., 2019, Review of the Proppant Selection for Hydraulic Fracturing. International Journal of Science and Engineering Applications, 8(9), 418–422. https://doi.org/10.7753/ijsea0809.1003.
- Novrianti, Rita, N., Prayitno, B., Faruq, M., & Arif, I., 2025, Characterization of Resin-Coated Silica Sand from Tibawan Rokan Hulu For Potential Use as Proppant. Scientific Contributions Oil and Gas, 48(2), 293–312. https://doi.org/10.29017/scog.v48i2.1767.
- Rahayu, T. S., Kartini, R., Adhitya, D. C., Rahalintar, P., Rosiani, D., & Satria, A. R. I. (2024). Screening Pasir Alam Sebagai Proppant Berdasarkan Standart Api Rp19c. Lembaran Publikasi Minyak Dan Gas Bumi (LPMGB), 58(3), 147-161. https://doi.org/10.29017/LPMGB.58.3.1698.
- Ramazanov, V., Matovu, S., Shafloot, T. Al, & Alarifi, S.A., 2025, Enhancing Fracturing Proppant Performance: Methods and Assessment. Arabian Journal for Science and Engineering, 50, 4477–4503. https://doi.org/10.1007/s13369-024-09679-y.
- Sahai, R., & Moghanloo, R.G., 2019, Proppant Transport in Complex Fracture Networks

- A Review. Journal of Petroleum Science and Engineering, 182, 106199. https://doi. org/10.1016/j.petrol.2019.106199.
- Wang, G., Ma, Q., Ren, L., & Hou, J., 2024, A Comprehensive Review of Multifunctional Proppants. ACS Omega. https://doi.org/10.1021/ acsomega.4c06941.
- Wei, X., Wang, Y., Yang, T., & Song, Y., 2023, Study on a New Type of High-Performance Resin-Coated Sand for Petroleum Fracturing Proppants. Coatings, 13(11). https://doi. org/10.3390/coatings13111841.
- Yu, J., Wang, J., Wang, S., Li, Y., Singh, A., Rijken, P., & Elsworth, D., 2022, Conductivity Evolution in Propped Fractures During Reservoir Drawdown. Rock Mechanics and Rock Engineering, 55(6), 3583–3597. https:// doi.org/10.1007/s00603-022-02796-w
- Zoveidavianpoor, M., & Gharibi, A. (2015). Application of polymers for coating of proppant in hydraulic fracturing of subterraneous formations: A comprehensive review. Journal of Natural Gas Science and Engineering, 24, 197–209. https://doi.org/10.1016/j. jngse.2015.03.024.