POTENSI HIDROKARBON SEDIMEN PRA-TERSIER DAERAH ATAMBUA, TIMOR BARAT

(Hydrocarbon Potential of The Pre-Tertiary Sediment of Atambua Area, West Timor)

Eko Budi Lelono, Djoko Sunarjanto, dan Abdul Kholiq

Pusat Penelitian dan Pengembangan Teknologi Minyak dan Gas Bumi "LEMIKAS"
Jl. Ciledug Raya Kav 109, Cipulir, Kebayoran Lama, Jakarta Selatan
Telepon: +62-21-7246150
Email: ekobi@lemigas.esdm.go.id; djokos02@lemigas.esdm.go.id

Teregistrasi I tanggal 8 Maret 2016; Diterima setelah perbaikan tanggal 1 Agustus 2016;

ABSTRAK


Kata Kunci: potensi, hidrokarbon, pra-tertiers, timor barat.

ABSTRACT

Atambua area and its vicinity have been well known to possess many hydrocarbon seepages. Unfortunately, lack of exploration activity avoids hydrocarbon potentiality of this area. This paper focuses on the geology of pre-Tertiary sequences in order to identify their potentiality for preparing working areas to be offered to the investors. The methodology of this research includes literature overview and recognition, remote sensing data interpretation, field surveys, laboratory analysis and data integration. This work found Permian freshwater (?lacustrine) sediments as a product of syn-riift, for the first time. This finding provides new opportunity to have petroleum system within Paleozoic age. Generally, the elements of petroleum system are proven to occur in study area. The Permian shale of Bisane Formation and the Triassic clay of Aitutu Formation are considered to be source rocks, whilst the Permian sandstone of Bisane Formation and the Jurassic sandstone of Oebat Formation are capable to act as reservoirs. Meanwhile, the Jurassic clay of Wailuli Formation may be potential for sealing. Hydrocarbon traps occurring in the studied area include basement involved thrust and imbricated fault.

Keywords: potentiality, hydrocarbon, pre-tertiary, west timor.
I. PENDAHULUAN

A. Latar Belakang

Berdasarkan pembelajaran sistem hidrokarbon untuk wilayah Indonesia, dari semua data yang ada diketahui bahwa volume minyak dan/atau gas yang akan ditemukan masih berpotensi besar, baik di daratan maupun di laut (Howes 2000 dalam Satyana 2013). Daerah perbatasan Indonesia-Timor Leste, antara lain Atambua (wilayah Nusa Tenggara Timur) dan Suai Cova Lima (Timor Leste) sudah lama terbukti memiliki sejumlah lokasi rembesan migas. Namun, eksplorasi migas belum dilakukan secara intensif sehingga potensinya belum banyak terungkap.


Dari berbagai daerah potensial di Indonesia, dilakukan Kegiatan Evaluasi Bersama Intensifikasi Eksplorasi Migas di Kawasan Timur Indonesia. Dalam tulisan ini dipilih daerah/ wilayah penelitian yang selama ini masih menyimpan tanda tanya banyak pihak tentang potensi migas yang terkandung di bawahnya, yaitu wilayah Atambua dan sekitarnya.

Mengingat di daerah perbatasan ini kondisi geologi Timor Indonesia dan Timor Leste banyak terdapat kesamaan, maka penelitian yang dilakukan di daerah Atambua memiliki nilai strategis dan pada saatnya nanti mampu meningkatkan tingkat keyakinan geologi, selanjutnya untuk mengetahui sumberdaya migas wilayah perbatasan negara Indonesia-Timor Leste-Australia.

B. Tujuan

Kegiatan eksplorasi migas Kawasan Timur Indonesia tahun 2015 difokuskan pada survei geologi, gayabarat, magnetik, magnetotelurik (MT) dan audio-magnetotelurik (AMT) di daerah Atambua, tetapi dalam makalah ini uraian difokuskan pada geologi batuan pra-Tersier dan kapasitasnya untuk bertindak sebagai batuan sumber (source rock), reservoir (reservoir) dan batuan penyekat (seal) sebagai perangkap hidrokarbon. Tujuannya adalah untuk mengidentifikasi potensi hidrokarbon batuan tersebut. Mulanya untuk menyiapkan lahan baru migas guna ditawarkan kepada investor. Diharapkan pada lahan migas yang berpotensi, akan ditindaklanjuti dengan kegiatan eksplorasi lanjutan termasuk juga pemboran dan ditawarkan sebagai wilayah kerja migas.

II. BAHAN DAN METODE

Secara garis besar metode yang dilakukan dalam penelitian ini diawali studi literatur dan evaluasi penelitian terdahulu. Selanjutnya adalah interpretasi
data citra satelit yang diikuti survei geologi dan geofisika serta analisis laboratorium. Akhirnya dilakukan integrasi antara data hasil survei dan hasil analisis laboratorium untuk mengetahui potensi batuan pra-Tersier dalam peranannya mengisi elemen-elemen sistem petroleum, juga untuk memahami struktur geologi yang berkembang yang bERPOTENSI sebagai perangkap hidrokarbon.


Geologi regional


Pada proses tektonik regional, bagian terdepan dari Timur Laut Australia bertabrakan dengan Busur Banda menyebabkannya pecah menjadi fragmen-fragement atau blok-blok (Harris et al. 2000). Gaya fraksi yang semakin membesar seiring tumbukan/ gesekan antara Lempeng Australia dengan Busa Banda menyebabkan Busur Banda yang memiliki densitas lebih besar dapat naik ke atas Lempeng Australia yang memiliki densitas lebih kecil dikenal sebagai "crocodile type" seperti terlihat pada Gambar 2 (Harris 1998 dalam Lelono dkk. 2015).

Gambar 3
Stratigrafi regional Pulau Timor (deSmet dkk., 1996 dalam Lelono dkk, 2015).


III. HASIL DAN DISKUSI
A. Stratigrafi Daerah Penelitian
Penamaan formasi batuan yang terdapat di daerah penelitian merujuk pada peta geologi yang diterbitkan oleh Pusat Survei Geologi. Formasi batuan yang dijumpai memiliki kisaran umur tertua...
Perm dan yang termuda adalah Kuarter (Lelono et al. 2015). Pada beberapa lokasi ditemukan formasi batuan yang belum terpetakan atau berbeda dengan peta geologi terdahulu. Batuan yang tersingkap di daerah penelitian meliputi beberapa formasi sebagai berikut:

a. Pra-Permian.


b. Permian.


Selain sedimen marin, ditemukan pula sedimen non-marin pada Formasi Bisane yang tersingkap di bagian barat daerah penelitian. Sedimen non-marin memperlihatkan ciri-ciri endapan danau (lacustrine)

Gambar 7
Singkapan sedimen klastik Formasi Bisane. (A) dan (B) Foto singkapan yang menerus, (C) (D) (E) struktur sedimen silang siur dan (D) Struktur sedimen hummocky cross-stratification.
Gambar 8
Singkapan batuan sedimen danau. (A) dan (B) Foto singkapan batuan, (C) (D) (E) (F) close-up papery shale, (G) Profil singkapan, dan (H) Peta indeks lokasi singkapan.


c. Trias.


Gambar 9
Penyebaran batuan Trias Formasi Aitutu, Lokasi Sungai Tune merupakan singkapan Formasi Aitutu terbaik.
Gambar 10
Singkapan Formasi Aitutu pada lintasan spot mapping Sungai Tune. (A) dan (B) batulempung hitam, (C) perselingan rijang, (D) struktur sedimen laminasi sejajar dan silang siur, dan (E) Halobia (fossil indeks Trias).

perselingan kalkarenit dengan kalsilutit dan beberapa sisipan rijang Gambar 9.


Menurut Charlton (2002), batuan sedimen Trias (Formasi Aitutu) menunjukkan potensi batuan induk yang bagus dengan keberadaan batulempung dan serpih berwarna hitam sampai abu-abu gelap yang diduga memiliki nilai TOC tinggi, di beberapa tempat muncul sulfur warna kekuningan, membuktikan

Gambar 11
Singkapan batuan Formasi Babulu. (A) dan (C) Singkapan batuan saling berhubungan, (B) Singkapan batupasir amalgamasi, (D) close up foto batupasir, (E) nodul besi pada batulempung.
2. Potensi Hidrokarbon Sedimen Pra-Tersier Daerah Atambua, Timor Barat.
(Eko Budi Lelono, dkk.)

Gambar 12
Lokasi singkapan batuan berumur Jura. Titik hijau gelap merupakan posisi mud volcano Formasi Wailuli, titik hijau terang berupa mélangé, dan titik kuning merupakan batupasir Formasi Oebaat.

bahwa potensi hidrokarbon juga terdapat pada batuan sedimen dengan lingkungan pengendapan laut dalam.


d. Jura.

Batuan sedimen umur Jura tersusun oleh batulempung yang sangat tebal dan unconsolidated, dikenal sebagai batulempung Formasi Wailuli dan juga batupasir tebal Formasi Oebaat (Harris 2011).

Gambar 13
Singkapan batulempung Formasi Wailuli sebelum remobilised, (B) dan (C) Foto close-up batulempung Formasi Wailuli, (D) Nodul besi tertanam dalam batulempung, (E) Peta indeks lokasi singkapan.
Batuan sedimen Formasi Wailuli dianggap sebagai penyebab keberadaan mud volcano yang tersebar luas di Timor Barat. Mud volcano ini terbentuk akibat remobilized batulempung Formasi Wailuli yang keluar melalui bidang lemah seperti rekahan dan sesar. Batuan ini pada pegunungan utara juga berperan sebagai matriks yang menyelimuti blok batuan yang lebih tua yang terangkat karena proses tumbukan (collision).


Gambar 14
Singkapan Formasi Oebaat.
(A) Foto lanskap singkapan, (B) dan (C) Foto close-up Belemnit, (D) Lokasi sampling.

Gambar 15
penelitian (Kolbano), wujud formasi ini berupa mud volcano yang sudah tidak aktif.

Pengamatan lapangan terhadap Formasi Wailulu yang belum mengalami remobilised memperlihatkan litologi terdiri atas batulempung berwarna kelabu, karbonatan, nodul mangan dan besi, tebal 20-30 m Gambar 13.

e. Kapur - Miosen.

Terdapat tiga formasi yang diendapkan pada umur Kapur sampai Miosen yaitu Formasi Nakfunu (Kapur), Formasi Ofu (Kapur-Miosen) dan Formasi Batuputih (Miosen). Ketiga formasi tersebut tersebar di bagian barat daerah penelitian, khususnya di sebelah selatan sepanjang pantai Gambar 15.

Formasi Nakfunu terbentuk di lingkungan laut dalam, tersusun oleh perselingan kalkarenit dan kalsilit dengan sisipan batulempung dan rijang Gambar 16. Rijang atau batulempung-rijang merupakan ciri khas formasi ini yang menunjukkan lingkungan pengendapan laut dalam.

Formasi Ofu terdiri atas perselingan antara kalkarenit, kalsilit, batulempung dan serpih Gambar 17. Secara umum Formasi Ofu mirip dengan Formasi Nakfunu, hanya saja tidak ditemukan sisipan rijang yang menjadi ciri khas Formasi Nakfunu.
Formasi Batuputih yang terbentuk pada umur Miosen tersusun oleh perselingan batugamping klastik dan tufa serta dijumpai beberapa sisipan batulempung dan serpih. Keberadaan tufa menjadi ciri utama Formasi Batuputih yang tersebar luas di bagian barat daerah penelitian di sisi selatan selatan sampai ke pantai.

B. Struktur Geologi

Analisis struktur dilakukan secara bertahap meliputi interpretasi data berdasarkan kelurusan pada peta Shuttle Radar Topography Mission (SRTM), observasi/ground-check dan survei lapangan serta analisis laboratorium. Daerah Atambua memperlihatkan fenomena tektonik yang kompleks sebagai daerah arc-continent collision, yaitu hubungan tektonik konvergen dua lempeng yang mengakomodasi tumbukan antar lempeng benua dengan lempeng benua, yaitu lempeng benua Eurasia yang diwakili oleh Busur Banda dan lempeng benua Indo-Australia.

a. Kelurusan


b. Arah Umum Kedudukan Batuan


C. Tektonostratigrafi

Pembagian tektonostratigrafi berdasarkan atas kejadian tektonik yang berawal dari pembentukan cekungan, kemudian pengisian cekungan dan deformasi cekungan. Pembentukan cekungan di daerah penelitian diperkirakan terjadi pada Perm awal, dengan mekanisme extensional pada batuan dasar Kontinen Australia. Mekanisme extensional ini berlangsung hingga Jura. Pengisian cekungan terjadi segera setelah cekungan terbentuk (Perm awal) dan terus berlangsung hingga saat ini (Gambar 20).

Pembentukan cekungan diawali di daftar, ditandai
Gambar 20
Tektonostratigrafi daerah penelitian.


Penurunan cekungan terus berlangsung hingga Trias yang diindikasikan dengan terbentuknya sedimen laut dalam Formasi Atutu. Singkapan Formasi Atutu tersusun oleh batuan karbonatan yang diendapkan di lingkungan laut dalam dengan mekanisme turbidite, terlihat dari struktur sedimen berupa graded bedding, laminasi sejajar, silang siur dan batulempung pelajik. Selain itu ditemukan pula sisisan serpih hitam yang dapat berfungsi sebagai batuan induk dan batugamping klastik (kalkarenit) yang dapat berperan sebagai batuan reservoar, pada infraformational petroleum system (Lelono et al. 2015).


Bersamaan proses collision terbentuk sedimen laut dalam Formasi Bobonaro yang diduga sebagai Formasi wailuli yang telah termobilisasi ulang (remobilised). Selanjutnya secara tidak selaras diadakan sedimen laut dangkal Formasi Batupuith berupa perselanaan tufta dan batugamping.


IV. KESIMPULAN DAN SARAN
Berdasarkan survei geologi dan geofisika non-seismik serta didukung analisis laboratorium, dapat disimpulkan bahwa sedimen pra-Tersier yang ada di daerah Atambua, NTT memiliki potensi migas.

Sementara itu, elemen-elemen sistem petroleum juga ditemukan pada Formasi batuan berumur Mesozoikum dan Tersier, seperti serpih hitam Formasi Aitutu berumur Trias yang berpotensi sebagai batuan induk. Batupasir Formasi Oebaat (Jura) dan batupasir Formasi Noele (Pliosen) dapat berperan sebagai reservoi. Batulemung tebal Formasi Waithi (Jura) sangat baik berperan sebagai batuan penyelak.

Kompleksitas tektonik daerah penelitian menghasilkan variasi struktur geologi yang dapat berfungsi sebagai jebakan migas. Di daerah pegunungan utara berkembang struktur basement involved, sedangkan di daerah central basin dan pegunungan selatan didominasi struktur basement involved thrust dan imbricated fault.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih atas dukungan berbagai pihak sehingga penelitian ini dapat terlaksana dengan baik, antara lain Kepala PPTMGB "LEMIGAS" yang menugaskan penulis bersama tim melakukan penelitian, Kepala Dinas Energi dan Sumber Daya Mineral Provinsi Nusa Tenggara Timur dan yang telah memberikan bantuan perijinan survei, pimpinan dan staf PT Elmus Tbk dan PT GDA Consulting yang telah melakukan pekerjaan survei, prosesing dan interpretasi data geologi dan geofisika daerah Atambua. Ucapan terima kasih kembali diberikan pula kepada seluruh anggota Tim dari Kelompok Program Litbang Teknologi Eksporasi PPTMGB "LEMIGAS" atas kerjasamanya yang sangat baik.

KEPUSTAKAAN


